308 research outputs found

    Euclid Preparation:XIV. The Complete Calibration of the Color-Redshift Relation (C3R2) Survey: Data Release 3

    Get PDF
    The Complete Calibration of the Color-Redshift Relation (C3R2) survey is obtaining spectroscopic redshifts in order to map the relation between galaxy color and redshift to a depth of i ~ 24.5 (AB). The primary goal is to enable sufficiently accurate photometric redshifts for Stage IV dark energy projects, particularly Euclid and the Nancy Grace Roman Space Telescope (Roman), which are designed to constrain cosmological parameters through weak lensing. We present 676 new high-confidence spectroscopic redshifts obtained by the C3R2 survey in the 2017B-2019B semesters using the DEIMOS, LRIS, and MOSFIRE multiobject spectrographs on the Keck telescopes. Combined with the 4454 redshifts previously published by this project, the C3R2 survey has now obtained and published 5130 high-quality galaxy spectra and redshifts. If we restrict consideration to only the 0.2 < zp < 2.6 range of interest for the Euclid cosmological goals, then with the current data release, C3R2 has increased the spectroscopic redshift coverage of the Euclid color space from 51% (as reported by Masters et al.) to the current 91%. Once completed and combined with extensive data collected by other spectroscopic surveys, C3R2 should provide the spectroscopic calibration set needed to enable photometric redshifts to meet the cosmology requirements for Euclid, and make significant headway toward solving the problem for Roman

    Euclid preparation:I. The Euclid Wide Survey

    Get PDF

    Euclid preparation: XV. Forecasting cosmological constraints for the EuclidEuclid and CMB joint analysis

    Get PDF
    The combination and cross-correlation of the upcoming Euclid data with cosmic microwave background (CMB) measurements is a source of great expectation since it will provide the largest lever arm of epochs, ranging from recombination to structure formation across the entire past light cone. In this work, we present forecasts for the joint analysis of Euclid and CMB data on the cosmological parameters of the standard cosmological model and some of its extensions. This work expands and complements the recently published forecasts based on Euclid-specific probes, namely galaxy clustering, weak lensing, and their cross-correlation. With some assumptions on the specifications of current and future CMB experiments, the predicted constraints are obtained from both a standard Fisher formalism and a posterior-fitting approach based on actual CMB data. Compared to a Euclid-only analysis, the addition of CMB data leads to a substantial impact on constraints for all cosmological parameters of the standard Λ-cold-dark-matter model, with improvements reaching up to a factor of ten. For the parameters of extended models, which include a redshift-dependent dark energy equation of state, non-zero curvature, and a phenomenological modification of gravity, improvements can be of the order of two to three, reaching higher than ten in some cases. The results highlight the crucial importance for cosmological constraints of the combination and cross-correlation of Euclid probes with CMB data

    Testing Convolutional Neural Networks for finding strong gravitational lenses in KiDS

    Get PDF
    Convolutional Neural Networks (ConvNets) are one of the most promising methods for identifying strong gravitational lens candidates in survey data. We present two ConvNet lens-finders which we have trained with a dataset composed of real galaxies from the Kilo Degree Survey (KiDS) and simulated lensed sources. One ConvNet is trained with single \textit{r}-band galaxy images, hence basing the classification mostly on the morphology. While the other ConvNet is trained on \textit{g-r-i} composite images, relying mostly on colours and morphology. We have tested the ConvNet lens-finders on a sample of 21789 Luminous Red Galaxies (LRGs) selected from KiDS and we have analyzed and compared the results with our previous ConvNet lens-finder on the same sample. The new lens-finders achieve a higher accuracy and completeness in identifying gravitational lens candidates, especially the single-band ConvNet. Our analysis indicates that this is mainly due to improved simulations of the lensed sources. In particular, the single-band ConvNet can select a sample of lens candidates with ∼40%\sim40\% purity, retrieving 3 out of 4 of the confirmed gravitational lenses in the LRG sample. With this particular setup and limited human intervention, it will be possible to retrieve, in future surveys such as Euclid, a sample of lenses exceeding in size the total number of currently known gravitational lenses.Comment: 16 pages, 10 figures. Accepted for publication in MNRA

    Finding Strong Gravitational Lenses in the Kilo Degree Survey with Convolutional Neural Networks

    Get PDF
    The volume of data that will be produced by new-generation surveys requires automatic classification methods to select and analyze sources. Indeed, this is the case for the search for strong gravitational lenses, where the population of the detectable lensed sources is only a very small fraction of the full source population. We apply for the first time a morphological classification method based on a Convolutional Neural Network (CNN) for recognizing strong gravitational lenses in 255255 square degrees of the Kilo Degree Survey (KiDS), one of the current-generation optical wide surveys. The CNN is currently optimized to recognize lenses with Einstein radii ≳1.4\gtrsim 1.4 arcsec, about twice the rr-band seeing in KiDS. In a sample of 2178921789 colour-magnitude selected Luminous Red Galaxies (LRG), of which three are known lenses, the CNN retrieves 761 strong-lens candidates and correctly classifies two out of three of the known lenses. The misclassified lens has an Einstein radius below the range on which the algorithm is trained. We down-select the most reliable 56 candidates by a joint visual inspection. This final sample is presented and discussed. A conservative estimate based on our results shows that with our proposed method it should be possible to find ∼100\sim100 massive LRG-galaxy lenses at z\lsim 0.4 in KiDS when completed. In the most optimistic scenario this number can grow considerably (to maximally ∼\sim2400 lenses), when widening the colour-magnitude selection and training the CNN to recognize smaller image-separation lens systems.Comment: 24 pages, 17 figures. Published in MNRA
    • …
    corecore