5,619 research outputs found

    Imprints of expansion onto the local anisotropy of solar wind turbulence

    Full text link
    We study the anisotropy of II-order structure functions defined in a frame attached to the local mean field in three-dimensional (3D) direct numerical simulations of magnetohydrodynamic turbulence, including or not the solar wind expansion. We simulate spacecraft flybys through the numerical domain by taking increments along the radial (wind) direction that forms an angle of 45o45^o with the ambient magnetic field. We find that only when expansion is taken into account, do the synthetic observations match the 3D anisotropy observed in the solar wind, including the change of anisotropy with scales. Our simulations also show that the anisotropy changes dramatically when considering increments oblique to the radial directions. Both results can be understood by noting that expansion reduces the radial component of the magnetic field at all scales, thus confining fluctuations in the plane perpendicular to the radial. Expansion is thus shown to affect not only the (global) spectral anisotropy, but also the local anisotropy of second-order structure functions by influencing the distribution of the local mean field, which enters this higher-order statistics.Comment: 5 pages, 5 figures, accepted in ApJ

    Alfv\'en-dynamo balance and magnetic excess in MHD turbulence

    Get PDF
    3D Magnetohydrodynamic (MHD) turbulent flows with initially magnetic and kinetic energies at equipartition spontaneously develop a magnetic excess (or residual energy), as well in numerical simulations and in the solar wind. Closure equations obtained in 1983 describe the residual spectrum as being produced by a dynamo source proportional to the total energy spectrum, balanced by a linear Alfv\'en damping term. A good agreement was found in 2005 with incompressible simulations; however, recent solar wind measurements disagree with these results. The previous dynamo-Alfv\'en theory is generalized to a family of models, leading to simple relations between residual and total energy spectra. We want to assess these models in detail against MHD simulations and solar wind data. The family of models is tested against compressible decaying MHD simulations with low Mach number, low cross-helicity, zero mean magnetic field, without or with expansion terms (EBM or expanding box model). A single dynamo-Alfv\'en model is found to describe correctly both solar wind scalings and compressible simulations without or with expansion. It is equivalent to the 1983-2005 closure equation but with critical balance of nonlinear turnover and linear Alfv\'en times, while the dynamo source term remains unchanged. The discrepancy with previous incompressible simulations is elucidated. The model predicts a linear relation between the spectral slopes of total and residual energies mR=1/2+3/2mTm_R = -1/2 + 3/2 m_T. Examining the solar wind data as in \cite{2013ApJ...770..125C}, our relation is found to be valid whatever the cross-helicity, even better so at high cross-helicity, with the total energy slope varying from 1.71.7 to 1.551.55.Comment: 7 pages, 7 figures, accepted for publication in A&

    Three-dimensional Iroshnikov-Kraichnan turbulence in a mean magnetic field

    Full text link
    Forced, weak MHD turbulence with guide field is shown to adopt different regimes, depending on the magnetic excess of the large forced scales. When the magnetic excess is large enough, the classical perpendicular cascade with 5/35/3 scaling is obtained, while when equipartition is imposed, an isotropic 3/23/2 scaling appears in all directions with respect to the mean field (\cite{2010PhRvE..82b6406G} or GM10). We show here that the 3/23/2 scaling of the GM10 regime is not ruled by a small-scale cross-helicity cascade, and propose that it is a 3D extension of a perpendicular weak Iroshnikov-Kraichnan (IK) cascade. We analyze in detail the structure functions in real space and show that they closely follow the critical balance relation both in the local frame and the global frame: we show that there is no contradiction between this and the isotropic 3/23/2 scaling of the spectra. We propose a scenario explaining the spectral structure of the GM10 regime, that starts with a perpendicular weak IK cascade and extends to 3D by using quasi-resonant couplings. The quasi-resonance condition happens to reduce the energy flux in the same way as is done in the weak perpendicular cascade, so leading to a 3/23/2 scaling in all directions. We discuss the possible applications of these findings to solar wind turbulence.Comment: Major re-write of manuscrip

    Solar wind turbulence from MHD to sub-ion scales: high-resolution hybrid simulations

    Get PDF
    We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wave numbers. The simulation results exhibit simultaneously several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magneto-hydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm's law.Comment: 5 pages, 5 figures; introduction and conclusions changed, references updated, accepted for publication in ApJ

    Two-dimensional Hybrid Simulations of Kinetic Plasma Turbulence: Current and Vorticity vs Proton Temperature

    Full text link
    Proton temperature anisotropies between the directions parallel and perpendicular to the mean magnetic field are usually observed in the solar wind plasma. Here, we employ a high-resolution hybrid particle-in-cell simulation in order to investigate the relation between spatial properties of the proton temperature and the peaks in the current density and in the flow vorticity. Our results indicate that, although regions where the proton temperature is enhanced and temperature anisotropies are larger correspond approximately to regions where many thin current sheets form, no firm quantitative evidence supports the idea of a direct causality between the two phenomena. On the other hand, quite a clear correlation between the behavior of the proton temperature and the out-of-plane vorticity is obtained.Comment: 4 pages, 2 figures, Proceedings of the Fourteenth International Solar Wind Conferenc

    High-resolution hybrid simulations of kinetic plasma turbulence at proton scales

    Get PDF
    We investigate properties of plasma turbulence from magneto-hydrodynamic (MHD) to sub-ion scales by means of two-dimensional, high-resolution hybrid particle-in-cell simulations. We impose an initial ambient magnetic field, perpendicular to the simulation box, and we add a spectrum of large-scale magnetic and kinetic fluctuations, with energy equipartition and vanishing correlation. Once the turbulence is fully developed, we observe a MHD inertial range, where the spectra of the perpendicular magnetic field and the perpendicular proton bulk velocity fluctuations exhibit power-law scaling with spectral indices of -5/3 and -3/2, respectively. This behavior is extended over a full decade in wavevectors and is very stable in time. A transition is observed around proton scales. At sub-ion scales, both spectra steepen, with the former still following a power law with a spectral index of ~-3. A -2.8 slope is observed in the density and parallel magnetic fluctuations, highlighting the presence of compressive effects at kinetic scales. The spectrum of the perpendicular electric fluctuations follows that of the proton bulk velocity at MHD scales, and flattens at small scales. All these features, which we carefully tested against variations of many parameters, are in good agreement with solar wind observations. The turbulent cascade leads to on overall proton energization with similar heating rates in the parallel and perpendicular directions. While the parallel proton heating is found to be independent on the resistivity, the number of particles per cell and the resolution employed, the perpendicular proton temperature strongly depends on these parameters.Comment: 15 pages, 13 figures, submitted to Ap

    Anisotropy of third-order structure functions in MHD turbulence

    Full text link
    The measure of the third-order structure function, Y, is employed in the solar wind to compute the cascade rate of turbulence. In the absence of a mean field B0=0, Y is expected to be isotropic (radial) and independent of the direction of increments, so its measure yields directly the cascade rate. For turbulence with mean field, as in the solar wind, Y is expected to become more two dimensional (2D), that is, to have larger perpendicular components, loosing the above simple symmetry. To get the cascade rate one should compute the flux of Y, which is not feasible with single-spacecraft data, thus measurements rely upon assumptions about the unknown symmetry. We use direct numerical simulations (DNS) of magneto-hydrodynamic (MHD) turbulence to characterize the anisotropy of Y. We find that for strong guide field B0=5 the degree of two-dimensionalization depends on the relative importance of shear and pseudo polarizations (the two components of an Alfv\'en mode in incompressible MHD). The anisotropy also shows up in the inertial range. The more Y is 2D, the more the inertial range extent differs along parallel and perpendicular directions. We finally test the two methods employed in observations and find that the so-obtained cascade rate may depend on the angle between B0 and the direction of increments. Both methods yield a vanishing cascade rate along the parallel direction, contrary to observations, suggesting a weaker anisotropy of solar wind turbulence compared to our DNS. This could be due to a weaker mean field and/or to solar wind expansion.Comment: Some text editing and typos corrected, 13 pages, 6 figures, to be published in Ap
    corecore