4,215 research outputs found

    Validity of semiclassical gravity in the stochastic gravity approach

    Full text link
    In semiclassical gravity the back-reaction of the classical gravitational field interacting with quantum matter fields is described by the semiclassical Einstein equations. A criterion for the validity of semiclassical gravity based on the stability of the solutions of the semiclassical Einstein equations with respect to quantum metric perturbations is discussed. The two-point quantum correlation functions for the metric perturbations can be described by the Einstein-Langevin equation obtained in the framework of stochastic gravity. These correlation functions agree, to leading order in the large NN limit, with the quantum correlation functions of the theory of gravity interacting with NN matter fields. The Einstein-Langevin equations exhibit runaway solutions and methods to deal with these solutions are discussed. The validity criterion is used to show that flat spacetime as a solution of semiclassical gravity is stable and, consequently, a description based on semiclassical gravity is a valid approximation in that case.Comment: Second Intenational Workshop DICE200

    Cosmological perturbations from stochastic gravity

    Get PDF
    In inflationary cosmological models driven by an inflaton field the origin of the primordial inhomogeneities which are responsible for large scale structure formation are the quantum fluctuations of the inflaton field. These are usually computed using the standard theory of cosmological perturbations, where both the gravitational and the inflaton fields are linearly perturbed and quantized. The correlation functions for the primordial metric fluctuations and their power spectrum are then computed. Here we introduce an alternative procedure for computing the metric correlations based on the Einstein-Langevin equation which emerges in the framework of stochastic semiclassical gravity. We show that the correlation functions for the metric perturbations that follow from the Einstein-Langevin formalism coincide with those obtained with the usual quantization procedures when the scalar field perturbations are linearized. This method is explicitly applied to a simple model of chaotic inflation consisting of a Robertson-Walker background, which undergoes a quasi-de-Sitter expansion, minimally coupled to a free massive quantum scalar field. The technique based on the Einstein-Langevin equation can, however, deal naturally with the perturbations of the scalar field even beyond the linear approximation, as is actually required in inflationary models which are not driven by an inflaton field such as Starobinsky's trace-anomaly driven inflation or when calculating corrections due to non-linear quantum effects in the usual inflaton driven models.Comment: 29 pages, REVTeX; minor changes, additional appendix with an alternative proof of the equivalence between stochastic and quantum correlation functions as well as an exact argument showing that the correlation function of curvature perturbations remains constant in time for superhorizon modes, which clarifies a recent claim in arXiv:0710.5342v

    Magnetocaloric effect in hexacyanochromate Prussian blue analogs

    Full text link
    We report on the magnetocaloric properties of two molecule-based hexacyanochromate Prussian blue analogs, nominally CsNi[Cr(CN)_6](H_2O) and Cr_3[Cr(CN)_6]_2x12(H_2O). The former orders ferromagnetically below Tc=90 K, whereas the latter is a ferrimagnet below Tc=230 K. For both, we find significantly large magnetic entropy changes DSm associated to the magnetic phase transitions. Notably, our studies represent the first attempt to look at molecule-based materials in terms of the magnetocaloric effect for temperatures well above the liquid helium range.Comment: 4 pages, 6 figure
    • …
    corecore