22 research outputs found

    The intestine under stress : effects of chemotherapy on the intestinal epithelium

    Get PDF
    In studying the effects of cytostatic drugs on intestinal function, the use of experimental animals is indispensable. Only they permit a detailed analysis of the entire organ in time, allowing each study of each phase of the disease. This would be both unethical and technically very difficult to perform in biopsies of human patients, especially in cancer patients who are already suffering from both disease and treatment. In our studies, the rat was chosen as a model, because of the similarities to humans in intestinal physiology and the availability of techniques and tools. In this thesis, attention was focussed on the absorptive and defensive functions of the intestine during damage and regeneration induced by the cytostatic drug methotrexate (MTX). MTX was chosen among the various cytostatic drugs available, because of the considerable knowledge about its pharmacology and its way of action in humans and animal species. As folic acid analogue, MTX directly seizes the proliferative machinery of the intestine, thereby disturbing the normal cell turnover of the epithelium

    Selective sparing of goblet cells and paneth cells in the intestine of methotrexate-treated rats

    Get PDF
    Proliferation, differentiation, and cell death were studied in small intestinal and colonic epithelia of rats after treatment with methotrexate. Days 1-2 after treatment were characterized by decreased proliferation, increased apoptosis, and decreased numbers and depths of small intestinal crypts in a proximal-to-distal decreasing gradient along the small intestine. The remaining crypt epithelium appeared flattened, except for Paneth cells, in which lysozyme protein and mRNA expression was increased. Regeneration through increased proliferation during days 3-4 coincided with villus atrophy, showing decreased numbers of villus enterocytes and decreased expression of the enterocyte-specific genes sucrase-isomaltase and carbamoyl phosphate synthase I. Remarkably, goblet cells were spared at villus tips and remained functional, displaying Muc2 and trefoil factor 3 expression. On days 8-10, all parameters had returned to normal in the whole small intestine. No methotrexate-induced changes were seen in epithelial morphology, proliferation, apoptosis, Muc2, and TFF3 immunostaining in the colon. The observed small intestinal sparing of Paneth cells and goblet cells following exposure to methotrexate is likely to contribute to epithelial defense during increased vulnerability of the intestinal epithelium

    Specific responses in rat small intestinal epithelial mRNA expression and protein levels during chemotherapeutic damage and regeneration

    Get PDF
    The rapidly dividing small intestinal epithelium is very sensitive to the cytostatic drug methotrexate. We investigated the regulation of epithelial gene expression in rat jejunum during methotrexate-induced damage and regeneration. Ten differentiation markers were localized on tissue sections and quantified at mRNA and protein levels relative to control levels. We analyzed correlations in temporal expression patterns between markers. mRNA expression of enterocyte and goblet cell markers decreased significantly during damage for a specific period. Of these, sucrase-isomaltase (-62%) and CPS (-82%) were correlated. Correlations were also found between lactase (-76%) and SGLT1 (-77%) and between I-FABP (-52%) and L-FABP (-45%). Decreases in GLUT5 (-53%), MUC2 (-43%), and TFF3 (-54%) mRNAs occurred independently of any of the other markers. In contrast, lysozyme mRNA present in Paneth cells increased (+76%). At the protein level, qualitative and quantitative changes were in agreement with mRNA expression, except for Muc2 (+115%) and TFF3 (+81%), which increased significantly during damage, following independent patterns. During regeneration, expression of each marker returned to control levels. The enhanced expression of cytoprotective molecules (Muc2, TFF3, lysozyme) during damage represents maintenance of goblet cell and Paneth cell functions, most likely to protect the epithelium. Decreased expression of enterocyte-specific markers represents decreased enterocyte function, of which fatty acid transporters were least affected
    corecore