66 research outputs found

    Human T Regulatory Cells Can Use the Perforin Pathway to Cause Autologous Target Cell Death

    Get PDF
    AbstractCytotoxic T lymphocytes and natural killer cells use the perforin/granzyme pathway to kill virally infected cells and tumor cells. Mutations in genes important for this pathway are associated with several human diseases. CD4+ T regulatory (Treg) cells have emerged as important in the control of immunopathological processes. We have previously shown that human adaptive Treg cells preferentially express granzyme B and can kill allogeneic target cells in a perforin-dependent manner. Here, we demonstrate that activated human CD4+CD25+ natural Treg cells express granzyme A but very little granzyme B. Furthermore, both Treg subtypes display perforin-dependent cytotoxicity against autologous target cells, including activated CD4+ and CD8+ T cells, CD14+ monocytes, and both immature and mature dendritic cells. This cytotoxicity is dependent on CD18 adhesive interactions but is independent of Fas/FasL. Our findings suggest that the perforin/granzyme pathway is one of the mechanisms that Treg cells can use to control immune responses

    GATA2 deficiency detected by newborn screening for SCID: A case report

    Get PDF
    The early diagnosis and treatment of inborn errors of immunity (IEI) is crucial in reducing the morbidity and mortality due to these disorders. The institution of newborn screening (NBS) for the diagnosis of Severe Combined Immune Deficiency (SCID) has decreased the mortality of this disorder and led to the discovery of novel genetic defects that cause this disease. GATA2 deficiency is an autosomal dominant, pleiotropic disease with clinical manifestations that include bone marrow failure, monocyte and B cell deficiency, leukemia, pulmonary alveolar proteinosis and lymphedema. We present the case of an infant identified by newborn screening for SCID due to GATA2 deficiency

    Novel Hemizygous IL2RG p.(Pro58Ser) Mutation Impairs IL-2 Receptor Complex Expression on Lymphocytes Causing X-Linked Combined Immunodeficiency

    Get PDF
    Hypomorphic IL2RG mutations may lead to milder phenotypes than X-SCID, named variably as atypical X-SCID or X-CID. We report an 11-year-old boy with a novel c. 172C>T;p.(Pro58Ser) mutation in IL2RG, presenting with atypical X-SCID phenotype. We also review the growing number of hypomorphic IL2RG mutations causing atypical X-SCID. We studied the patient's clinical phenotype, B, T, NK, and dendritic cell phenotypes, IL2RG and CD25 cell surface expression, and IL-2 target gene expression, STAT tyrosine phosphorylation, PBMC proliferation, and blast formation in response to IL-2 stimulation, as well as protein-protein interactions of the mutated IL2RG by BioID proximity labeling. The patient suffered from recurrent upper and lower respiratory tract infections, bronchiectasis, and reactive arthritis. His total lymphocyte counts have remained normal despite skewed T and B cells subpopulations, with very low numbers of plasmacytoid dendritic cells. Surface expression of IL2RG was reduced on his lymphocytes. This led to impaired STAT tyrosine phosphorylation in response to IL-2 and IL-21, reduced expression of IL-2 target genes in patient CD4+ T cells, and reduced cell proliferation in response to IL-2 stimulation. BioID proximity labeling showed aberrant interactions between mutated IL2RG and ER/Golgi proteins causing mislocalization of the mutated IL2RG to the ER/Golgi interface. In conclusion, IL2RG p.(Pro58Ser) causes X-CID. Failure of IL2RG plasma membrane targeting may lead to atypical X-SCID. We further identified another carrier of this mutation from newborn SCID screening, lost to closer scrutiny.Peer reviewe

    Germline IKAROS dimerization haploinsufficiency causes hematologic cytopenias and malignancies

    Get PDF
    IKAROS is a transcription factor forming homo- and heterodimers and regulating lymphocyte development and function. Germline mutations affecting the IKAROS N-terminal DNA binding domain, acting in a haploinsufficient or dominant-negative manner, cause immunodeficiency. Herein, we describe 4 germline heterozygous IKAROS variants affecting its C-terminal dimerization domain, via haploinsufficiency, in 4 unrelated families. Index patients presented with hematologic disease consisting of cytopenias (thrombocytopenia, anemia, neutropenia)/Evans syndrome and malignancies (T-cell acute lymphoblastic leukemia, Burkitt lymphoma). These dimerization defective mutants disrupt homo- and heterodimerization in a complete or partial manner, but they do not affect the wild-type allele function. Moreover, they alter key mechanisms of IKAROS gene regulation, including sumoylation, protein stability, and the recruitment of the nucleosome remodeling and deacetylase complex; none affected in N-terminal DNA binding defects. These C-terminal dimerization mutations are largely associated with hematologic disorders, display dimerization haploinsufficiency and incomplete clinical penetrance, and differ from previously reported allelic variants in their mechanism of action. Dimerization mutants contribute to the growing spectrum of IKAROS-associated diseases displaying a genotype-phenotype correlation

    A colitogenic memory CD4+ T cell population mediates gastrointestinal graft-versus-host disease

    Get PDF
    Damage to the gastrointestinal tract is a major cause of morbidity and mortality in graft-versus-host disease (GVHD) and is attributable to T cell–mediated inflammation. In this work, we identified a unique CD4+ T cell population that constitutively expresses the β2 integrin CD11c and displays a biased central memory phenotype and memory T cell transcriptional profile, innate-like properties, and increased expression of the gut-homing molecules α4β7 and CCR9. Using several complementary murine GVHD models, we determined that adoptive transfer and early accumulation of β2 integrin–expressing CD4+ T cells in the gastrointestinal tract initiated Th1-mediated proinflammatory cytokine production, augmented pathological damage in the colon, and increased mortality. The pathogenic effect of this CD4+ T cell population critically depended on coexpression of the IL-23 receptor, which was required for maximal inflammatory effects. Non–Foxp3-expressing CD4+ T cells produced IL-10, which regulated colonic inflammation and attenuated lethality in the absence of functional CD4+Foxp3+ T cells. Thus, the coordinate expression of CD11c and the IL-23 receptor defines an IL-10–regulated, colitogenic memory CD4+ T cell subset that is poised to initiate inflammation when there is loss of tolerance and breakdown of mucosal barriers

    CTLA4 Message Reflects Pathway Disruption in Monogenic Disorders and Under Therapeutic Blockade

    Get PDF
    CTLA-4 is essential for immune tolerance. Heterozygous CTLA4 mutations cause immune dysregulation evident in defective regulatory T cells with low levels of CTLA-4 expression. Biallelic mutations in LRBA also result in immune dysregulation with low levels of CTLA-4 and clinical presentation indistinguishable from CTLA-4 haploinsufficiency. CTLA-4 has become an immunotherapy target whereby its blockade with a monoclonal antibody has resulted in improved survival in advanced melanoma patients, amongst other malignancies. However, this therapeutic manipulation can result in autoimmune/inflammatory complications reminiscent of those seen in genetic defects affecting the CTLA-4 pathway. Despite efforts made to understand and establish disease genotype/phenotype correlations in CTLA-4-haploinsufficiency and LRBA-deficiency, such relationships remain elusive. There is currently no specific immunological marker to assess the degree of CTLA-4 pathway disruption or its relationship with clinical manifestations. Here we compare three different patient groups with disturbances in the CTLA-4 pathway—CTLA-4-haploinsufficiency, LRBA-deficiency, and ipilimumab-treated melanoma patients. Assessment of CTLA4 mRNA expression in these patient groups demonstrated an inverse correlation between the CTLA4 message and degree of CTLA-4 pathway disruption. CTLA4 mRNA levels from melanoma patients under therapeutic CTLA-4 blockade (ipilimumab) were increased compared to patients with either CTLA4 or LRBA mutations that were clinically stable with abatacept treatment. In summary, we show that increased CTLA4 mRNA levels correlate with the degree of CTLA-4 pathway disruption, suggesting that CTLA4 mRNA levels may be a quantifiable surrogate for altered CTLA-4 expression

    Neutrophils: the forgotten cell in JIA disease pathogenesis

    Get PDF
    Juvenile idiopathic arthritis (JIA) has long been assumed to be an autoimmune disease, triggered by aberrant recognition of "self" antigens by T-cells. However, systems biology approaches to this family of diseases have suggested complex interactions between innate and adaptive immunity that underlie JIA. In particular, new data suggest an important role for neutrophils in JIA pathogenesis. In this short review, we will discuss the new data that support a role for neutrophils in JIA, discuss regulatory functions that link neutrophils to adaptive immune responses, and discuss future areas of investigation. Above all else, we invite the reader to re-consider the use of the term "autoimmunity" as applied to the family of illnesses we collectively call JIA

    Risk of significant cytopenias after treatment with tocilizumab in systemic juvenile arthritis patients with a history of macrophage activation syndrome

    Get PDF
    Abstract Tocilizumab (TCZ) is the first FDA- approved treatment for systemic juvenile idiopathic arthritis (sJIA). We report 3 cases of cytopenias in children with sJIA treated with TCZ. Two of the children who developed significant cytopenias shortly after initiation of TCZ had a history of macrophage activation syndrome. We raise the possibility that patients with a tendency towards MAS have an increased risk of developing cytopenias when treated with tocilizumab.</p

    Newborn Screening for Severe Combined Immunodeficiency

    No full text
    corecore