14 research outputs found
Alloyed surfaces: new substrates for graphene growth
We report a systematic ab-initio density functional theory investigation of Ni(111) surface alloyed with elements of group
IV (Si, Ge and Sn), demonstrating the possibility to use it to grow high quality graphene. Ni(111) surface represents
an ideal substrate for graphene, due to its catalytic properties and perfect matching with the graphene lattice constant.
However, Dirac bands of graphene growth on Ni(111) are completely destroyed due to the strong hybridization between
carbon pz and Ni d orbitals. Group IV atoms, namely Si, Ge and Sn, once deposited on Ni(111) surface, form an ordered
alloyed surface with √
3 ×
√
3-R30◦
reconstruction. We demonstrate that, at variance with the pure Ni(111) surface,
alloyed surfaces effectively decouple graphene from the substrate, resulting unstrained due to the nearly perfect lattice
matching and preserves linear Dirac bands without the strong hybridization with Ni d states. The proposed surfaces can
be prepared before graphene growth without resorting on post-growth processes which necessarily alter the electronic
and structural properties of graphene
Recommended from our members
Controlled assembly of graphene-capped nickel, cobalt and iron silicides
In-situ dendrite/metallic glass matrix composites (MGMCs) with a composition of Ti46Zr20V12Cu5Be17 exhibit ultimate tensile strength of 1510 MPa and fracture strain of about 7.6%. A tensile deformation model is established, based on the five-stage classification: (1) elastic-elastic, (2) elastic-plastic, (3) plastic-plastic (yield platform), (4) plastic-plastic (work hardening), and (5) plastic-plastic (softening) stages, analogous to the tensile behavior of common carbon steels. The constitutive relations strongly elucidate the tensile deformation mechanism. In parallel, the simulation results by a finite-element method (FEM) are in good agreement with the experimental findings and theoretical calculations. The present study gives a mathematical model to clarify the work-hardening behavior of dendrites and softening of the amorphous matrix. Furthermore, the model can be employed to simulate the tensile behavior of in-situ dendrite/MGMCs
Atomically precise semiconductor-graphene and hBN interfaces by Ge intercalation
The full exploration of the potential, which graphene offers to nanoelectronics requires its integration into semiconductor technology. So far the real-world applications are limited by the ability to concomitantly achieve large single-crystalline domains on dielectrics and semiconductors and to tailor the interfaces between them. Here we show a new direct bottom-up method for the fabrication of high-quality atomically precise interfaces between 2D materials, like graphene and hexagonal boron nitride (hBN), and classical semiconductor via Ge intercalation. Using angle-resolved photoemission spectroscopy and complementary DFT modelling we observed for the first time that epitaxially grown graphene with the Ge monolayer underneath demonstrates Dirac Fermions unaffected by the substrate as well as an unperturbed electronic band structure of hBN. This approach provides the intrinsic relativistic 2D electron gas towards integration in semiconductor technology. Hence, these new interfaces are a promising path for the integration of graphene and hBN into state-of-the-art semiconductor technology
Carbon nanowalls: the next step for physical manifestation of the black body coating
The optical properties of carbon nanowall (CNW) films in the visible range have been studied and reported for the first time. Depending on the film structure, ultra-low total reflectance up to 0.13% can be reached, which makes the CNW films a promising candidate for the black body-like coating, and thus for a wide range of applications as a light absorber. We have estimated important trends in the optical property variation from sample to sample, and identified the presence of edge states and domain boundaries in carbon nanowalls as well as the film mass density variation as the key factors. Also we demonstrated that at much lower film thickness and density than for a carbon nanotube forest the CNWs yield one order higher specific light absorption
Controlled assembly of graphene capped nickel, cobalt and iron silicides
In-situ dendrite/metallic glass matrix composites (MGMCs) with a composition of Ti46Zr20V12Cu5Be17 exhibit ultimate tensile strength of 1510 MPa and fracture strain of about 7.6%. A tensile deformation model is established, based on the five-stage classification: (1) elastic-elastic, (2) elastic-plastic, (3) plastic-plastic (yield platform), (4) plastic-plastic (work hardening), and (5) plastic-plastic (softening) stages, analogous to the tensile behavior of common carbon steels. The constitutive relations strongly elucidate the tensile deformation mechanism. In parallel, the simulation results by a finite-element method (FEM) are in good agreement with the experimental findings and theoretical calculations. The present study gives a mathematical model to clarify the work-hardening behavior of dendrites and softening of the amorphous matrix. Furthermore, the model can be employed to simulate the tensile behavior of in-situ dendrite/MGMCs
First principles and angle resolved photoemission study of lithium doped metallic black phosphorous
First principles calculations demonstrate the metallization of phosphorene by means of Li doping
filling the unoccupied antibonding pz states. The electron–phonon coupling in the metallic phase is
strong enough to eventually lead to a superconducting phase at Tc= 17 K for LiP8 stoichiometry.
Using angle-resolved photoemission spectroscopy we confirm that the surface of black phosphorus
can be chemically functionalized using Li atoms which donate their 2s electron to the conduction
band. The combined theoretical and experimental study demonstrates the semiconductor-metal
transition indicating a feasible way to induce a superconducting phase in phosphorene and few-layer
black phosphorus
The Chemistry of Imperfections in N Graphene
Many propositions have been already put forth for the practical use of N-graphene in various devices, such as batteries, sensors, ultracapacitors, and next generation electronics. However, the chemistry of nitrogen imperfections in this material still remains an enigma. Here we demonstrate a method to handle N-impurities in graphene, which allows efficient conversion of pyridinic N to graphitic N and therefore precise tuning of the charge carrier concentration. By applying photoemission spectroscopy and density functional calculations, we show that the electron doping effect of graphitic N is strongly suppressed by pyridinic N. As the latter is converted into the graphitic configuration, the efficiency of doping rises up to half of electron charge per N atom
Anisotropic Eliashberg function and electron phonon coupling in doped graphene
We investigate, with high-resolution angle-resolved photoemission spectroscopy, the spectral function of potassium-doped quasi-free-standing graphene on Au. Angle-dependent x-ray photoemission and density functional theory calculations demonstrate that potassium intercalates into the graphene/Au interface, leading to an upshift of the K-derived electronic band above the Fermi level. This empty band is what makes this system perfectly suited to disentangle the contributions to electron-phonon coupling coming from the pi band and K-derived bands. From a self-energy analysis we find an anisotropic electron-phonon coupling strength lambda of 0.1 (0.2) for the K Gamma (K M) high-symmetry directions in momentum space, respectively. Interestingly, the high-energy part of the Eliashberg function which relates to graphene's optical phonons is equal in both directions but only in K M does an additional low-energy part appear