8 research outputs found

    Bone: Vascular Tumours

    Get PDF
    Review on Bone: Vascular Tumours, with data on clinics, and the genes involved

    Bone: Haemangiomas and related lesions

    Get PDF
    Review on Bone: Haemangiomas and related lesions, with data on clinics, and the genes involved

    Bone: Angiosarcoma

    Get PDF
    Review on Bone: Angiosarcoma, with data on clinics, and the genes involved

    Active TGF-ÎČ signaling and decreased expression of PTEN separates angiosarcoma of bone from its soft tissue counterpart

    No full text
    Angiosarcomas constitute a heterogeneous group of highly malignant vascular tumors. Angiosarcoma of bone is rare and poorly characterized. For angiosarcoma of soft tissue, some pathways seem to be involved in tumor development. Our aim was to evaluate the role of these pathways in angiosarcoma of bone. We collected 37 primary angiosarcomas of bone and used 20 angiosarcomas of soft tissue for comparison. Immunohistochemistry was performed on constructed tissue microarrays to evaluate expression of CDKN2A, TP53, PTEN, BCL2, CDK4, MDM2, cyclin D1, ÎČ-catenin, transforming growth factor-ÎČ (TGF-ÎČ), CD105, phospho-Smad1, phospho-Smad2, hypoxia-inducible factor-1α, plasminogen activator inhibitor type 1 (PAI-1), VEGF, CD117 and glucose transporter--1. PIK3CA was screened for hotspot mutations in 19 angiosarcomas. In nearly 55% of the angiosarcoma of bone, the retinoblastoma (Rb) pathway was affected. Loss of CDKN2A expression was associated with a significantly worse prognosis. No overexpression of TP53 or MDM2 was found, suggesting that the TP53 pathway is not important in angiosarcoma of bone. Angiosarcoma of bone showed highly active TGF-ÎČ signaling with immunoreactivity for phospho-Smad2 and PAI-1. Although the phosphatidylinositol 3-kinase (PI3K)/Akt pathway seems to be active in both tumor groups, different mechanisms were involved: 41% of angiosarcoma of bone showed a decrease in expression of PTEN, whereas in angiosarcoma of soft tissue overexpression of KIT was found (90%). PIK3CA hotspot mutations were absent. In conclusion, the Rb pathway is involved in tumorigenesis of angiosarcoma of bone. The PI3K/Akt pathway is activated in both angiosarcoma of bone and soft tissue, however, with a different cause; PTEN expression is decreased in angiosarcoma of bone, whereas angiosarcomas of soft tissue show overexpression of KIT. Our findings support that angiosarcomas are a heterogeneous group of vascular malignancies. Both angiosarcoma of bone and soft tissue may benefit from therapeutic strategies targeting the PI3K/Akt pathway. However, interference with TGF-ÎČ signaling may be specifically relevant in angiosarcoma of bone.Modern Pathology advance online publication, 19 April 2013; doi:10.1038/modpathol.2013.56

    Mismatch repair deficiency is rare in bone and soft tissue tumors

    No full text
    INTRODUCTION: There has been an increased demand for mismatch repair (MMR) status testing in sarcoma patients after the success of immune checkpoint inhibition (ICI) in MMR deficient tumors. However, data on MMR deficiency in bone and soft tissue tumors is sparse, rendering it unclear if routine screening should be applied. Hence, we aimed to study the frequency of MMR deficiency in bone and soft tissue tumors after we were prompted by two (potential) Lynch syndrome patients developing sarcomas. METHODS: Immunohistochemical expression of MLH1, PMS2, MSH2 and MSH6 was assessed on tissue micro arrays (TMAs), and included 353 bone and 539 soft tissue tumors. Molecular data was either retrieved from reports or microsatellite instability (MSI) analysis was performed. In MLH1 negative cases, additional MLH1 promoter hypermethylation analysis followed. Furthermore, a systematic literature review on MMR deficiency in bone and soft tissue tumors was conducted. RESULTS: Eight MMR deficient tumors were identified (1%), which included four leiomyosarcoma, two rhabdomyosarcoma, one malignant peripheral nerve sheath tumor and one radiation‐associated sarcoma. Three patients were suspected for Lynch syndrome. Literature review revealed 30 MMR deficient sarcomas, of which 33% were undifferentiated/unclassifiable sarcomas. 57% of the patients were genetically predisposed. CONCLUSION: MMR deficiency is rare in bone and soft tissue tumors. Screening focusing on tumors with myogenic differentiation, undifferentiated/unclassifiable sarcomas and in patients with a genetic predisposition / co‐occurrence of other malignancies can be helpful in identifying patients potentially eligible for ICI
    corecore