2 research outputs found

    Food biofortification : reaping the benefits of science to overcome hidden hunger

    Get PDF
    Biofortification is a process of increasing the density of minerals and vitamins in a food crop through conventional plant breeding, genetic engineering, or agronomic practices (primarily use of fertilizers and foliar sprays). Biofortified staple food crops, when substituted consistently for non-biofortified staple food crops, can generate measurable improvements in human nutrition and health. This monograph describes the progress made in developing, testing, and disseminating biofortified staple food crops, primarily through the use of conventional plant breeding, summarizing the activities of two consortiums of inter-disciplinary collaborating institutions led the HarvestPlus program and the International Potato Center (CIP). We focus on laying out the evidence base proving the effectiveness and impact to date of biofortified crops. Results of a large number of nutritional bioavailability and efficacy trials are summarized (Chapter 2), crop development techniques and activities are presented and variety releases documented for a dozen staple food crops in low and middle income countries (LMICs) in Africa, Asia, and Latin America (Chapter 3), and strategies for promoting the uptake of specific biofortified crops are discussed, concurrent with policy advocacy to encourage key institutions to mainstream the promotion, and use of biofortified crops in their core activities (Chapters 4 and 5). Statistics will be presented on numbers of farm households adopting biofortified crops (Chapters 3 and 4), now available to farmers in 40 low and middle income countries (LMICs). Each section will outline the way forward on additional future activities required to enhance the development and impact the biofortification through conventional plant breeding. No biofortified staple food crop developed through transgenic techniques has been fully de-regulated for release to farmers in LMICs. Yet transgenic techniques hold the potential for a several-fold increase in the impact/benefits of biofortified crops. This potential is described in Chapter 6 which discusses developmental research already completed, including achieving higher densities of single nutrients than is possible with conventional breeding, combining multiple nutrient traits in single events, slowing down/reducing the level of degradation of vitamins after harvesting, and combining superior agronomic traits with nutrient traits in single events. A final chapter summarizes and discusses key questions and issues that will influence the ultimate mainstreaming of biofortified crops in food systems in LMICs and will allow maximization of the benefits of biofortification
    corecore