374 research outputs found
Personality and personality disorders in urban and rural Africa: results from a field trial in Burkina Faso
When conducting research in different cultural settings, assessing measurement equivalence is of prime importance to determine if constructs and scores can be compared across groups. Structural equivalence implies that constructs have the same meaning across groups, metric equivalence implies that the metric of the scales remains stable across groups, and full scale or scalar equivalence implies that the origin of the scales is the same across groups. Several studies have observed that the structure underlying both normal personality and personality disorders (PDs) is stable across cultures. Most of this cross-cultural research was conducted in Western and Asian cultures. In Africa, the few studies were conducted with well-educated participants using French or English instruments. No research was conducted in Africa with less privileged or preliterate samples. The aim of this research was to study the structure and expression of normal and abnormal personality in an urban and a rural sample in Burkina Faso. The sample included 1,750 participants, with a sub-sample from the urban area of Ouagadougou (nâ=â1,249) and another sub-sample from a rural village, Soumiaga (nâ=â501). Most participants answered an interview consisting of a MoorĂ© language adaptation of the Revised NEO Personality Inventory and of the International Personality Disorders Examination. MoorĂ© is the language of the Mossi ethnic group, and the most frequently spoken local language in Burkina Faso. A sub-sample completed the same self-report instruments in French. Demographic variables only had a small impact on normal and abnormal personality traits mean levels. The structure underlying normal personality was unstable across regions and languages, illustrating that translating a complex psychological inventory into a native African language is a very difficult task. The structure underlying abnormal personality and the metric of PDs scales were stable across regions. As scalar equivalence was not reached, mean differences cannot be interpreted. Nevertheless, these differences could be due to an exaggerated expression of abnormal traits valued in the two cultural settings. Our results suggest that studies using a different methodology should be conducted to understand what is considered, in different cultures, as deviating from the expectations of the individual's culture, and as a significant impairment in self and interpersonal functioning, as defined by the DSM-5
Antibiotic-dependent expression of early transcription factor subunits leads to stringent control of vaccinia virus replication
AbstractThe use of vaccinia virus (VACV) as the vaccine against variola virus resulted in the eradication of smallpox. VACV has since been used in the development of recombinant vaccine and therapeutic vectors, but complications associated with uncontrolled viral replication have constrained its use as a live viral vector. We propose to improve the safety of VACV as a live-replicating vector by using elements of the tet operon to control the transcription of genes that are essential for viral growth. Poxviruses encode all enzymes and factors necessary for their replication within the host cell cytoplasm. One essential VACV factor is the vaccinia early transcription factor (VETF) packaged into the viral core. This heterodimeric protein is required for expression of early VACV genes. VETF is composed of a large subunit encoded by the A7L gene and a small subunit encoded by the D6R gene. Two recombinant VACVs were generated in which either the A7L or D6R gene was placed under the control of tet operon elements to allow their transcription, and therefore viral replication, to be dependent on tetracycline antibiotics such as doxycycline. In the absence of inducers, no plaques were produced but abortively infected cells could be identified by expression of a reporter gene. In the presence of doxycycline, both recombinant viruses replicated indistinguishably from the wild-type strain. This stringent control of VACV replication can be used for the development of safer, next-generation VACV vaccines and therapeutic vectors. Such replication-inducible VACVs would only replicate when administered with tetracycline antibiotics, and if adverse events were to occur, treatment would be as simple as antibiotic cessation
Comparative analysis of mesenchymal stromal cells biological properties
The stromal progenitors of mesodermal cells, mesenchymal stromal cells (MSCs), are a heterogeneous population of plastic adherent fibroblast-like cells with extensive proliferative capacity and differentiation potential. Human MSCs have now been isolated from various tissues including bone marrow, muscle, skin, and adipose tissue, the latter being one of the most suitable cell sources for cell therapy, because of its easy accessibility, minimal morbidity, and abundance of cells. Bone marrow and subcutaneous or visceral adipose tissue samples were collected, digested with collagenase if needed, and seeded in Iscove's medium containing 5% human platelet lysate. Nonadherent cells were removed after 2-3 days and the medium was replaced twice a week. Confluent adherent cells were detached, expanded, and analyzed for several biological properties such as morphology, immunophenotype, growth rate, senescence, clonogenicity, differentiation capacity, immunosuppression, and secretion of angiogenic factors. The results show significant differences between lines derived from subcutaneous fat compared to those derived from visceral fat, such as the higher proliferation rate of the first and the strong induction of angiogenesis of the latter. We are convinced that the identification of the peculiarities of MSCs isolated from different tissues will lead to their more accurate use in cell therapy
Indole derivative interacts with estrogen receptor beta and inhibits human ovarian cancer cell growth
Ovarian cancer remains the leading cause of mortality among gynecological tumors. Estrogen receptor beta (ERÎČ) expression has been suggested to act as a tumor suppressor in epithelial ovarian cancer by reducing both tumor growth and metastasis. ERÎČ expression abnormalities represent a critical step in the development and progression of ovarian cancer: for these reasons, its reâexpression by genetic engineering, as well as the use of targeted ERÎČ therapies, still constitute an important therapeutic approach. 3â{[2âchloroâ1â(4âchlorobenzyl)â5âmethoxyâ6-methylâ1Hâindolâ3âyl]methylene}â5âhydroxyâ6âmethylâ1,3âdihydroâ2Hâindolâ2âone, referred to here as compound 3, has been shown to have cytostatic as well cytotoxic effects on various hormone-dependent cancer cell lines. However, the mechanism of its antiâcarcinogenic activity is not well understood. Here, we offer a possible explanation of such an effect in the human ovarian cancer cell line IGROV1. Chromatin binding protein assay and liquid chromatography mass spectrometry were exploited to localize and quantify compound 3 in cells. Molecular docking was used to prove compound 3 binding to ERÎČ. Mass spectrometryâbased approaches were used to analyze histone postâtranslational modifications. Finally, gene expression analyses revealed a set of genes regulated by the ERÎČ/3 complex, namely CCND1, MYC, CDKN2A, and ESR2, providing possible molecular mechanisms that underline the observed antiproliferative effects
Exploring the Needs and Expectations of Expectant and New Parents for an mHealth Application to Support the First 1000 Days of Life: Steps toward a Co-Design Approach
To improve maternal and child health, it is essential to adhere to health-promoting and preventive measures. However, reliable information as well as effective tools are not easy to identify in this field. Our cross-sectional study investigated the needs and expectations of expectant and new mothers and fathers as potential primary users of a hypothetical application supporting the first 1000 days of life. Between May and August 2022, we recruited expectant and new parents by administering an 83-item 5-point Likert scale questionnaire related to the content, functionalities, and technical features of the hypothetical app. We stratified responses using sociodemographic characteristics and then performed ward hierarchical clustering. The 94 women and 69 men involved in our study generally agreed with the proposed content, but expressed low interest in certain app functionalities or features, including those related to the interaction mechanism and interactivity. Women were generally more demanding than men. Our findings, resulting from the engagement of end-users, may be useful for designers and technology providers to implement mHealth solutions that, in addition to conveying reliable information, are tailored to the needs and preferences of end-users in the first 1000 days of life
Human iPSC-Derived 3D Hepatic Organoids in a Miniaturized Dynamic Culture System
The process of identifying and approving a new drug is a time-consuming and expensive procedure. One of the biggest issues to overcome is the risk of hepatotoxicity, which is one of the main reasons for drug withdrawal from the market. While animal models are the gold standard in preclinical drug testing, the translation of results into therapeutic intervention is often ambiguous due to interspecies differences in hepatic metabolism. The discovery of human induced pluripotent stem cells (hiPSCs) and their derivatives has opened new possibilities for drug testing. We used mesenchymal stem cells and hepatocytes both derived from hiPSCs, together with endothelial cells, to miniaturize the process of generating hepatic organoids. These organoids were then cultivated in vitro using both static and dynamic cultures. Additionally, we tested spheroids solely composed by induced hepatocytes. By miniaturizing the system, we demonstrated the possibility of maintaining the organoids, but not the spheroids, in culture for up to 1 week. This timeframe may be sufficient to carry out a hypothetical pharmacological test or screening. In conclusion, we propose that the hiPSCderived liver organoid model could complement or, in the near future, replace the pharmacological and toxicological tests conducted on animals
The small angle tile calorimeter in the DELPHI experiment
The {\bf S}mall angle {\bf TI}le {\bf C}alorimeter ({\bf STIC}) provides calorimetric coverage in the very forward region of the DELPHI experiment at the CERN LEP collider. The structure of the calorimeters, built with a so-called ``shashlik'' technique, gives a perfectly hermetic calorimeter and still allows for the insertion of tracking detectors within the sampling structure to measure the direction of the showering particle. A charged-particle veto system, composed of two scintillator layers, makes it possible to trigger on single photon events and provides e- separat ion. Results are presented from the extensive studies of these detectors in the CERN testbeams prior to installation and of the detector performance at LEP
Circulating endothelial cell count: a reliable marker of endothelial damage in patients undergoing hematopoietic stem cell transplantation
The physio-pathologic interrelationships between endothelium and GvHD have been better elucidated and have led to definition of the entity 'endothelial GvHD' as an essential early phase prior to the clinical presentation of acute GvHD. Using the CellSearch system, we analyzed circulating endothelial cells (CEC) in 90 allogeneic hematopoietic stem cell transplantation (allo-HSCT) patients at the following time-points: T1 (pre-conditioning), T2 (pre-transplant), T3 (engraftment), T4 (onset of GvHD) and T5 (1 week after steroid treatment). Although CEC changes in allo-HSCT represent a dynamic phenomenon influenced by many variables (that is, conditioning, immunosuppressive treatments, engraftment syndrome and infections), we showed that CEC peaks were constantly seen at onset of acute GvHD and invariably returned to pre-transplant values after treatment response. Since we showed that CEC changes during allo-HSCT has rapid kinetics that may be easily missed if blood samples are drawn at pre-fixed time-points, we rather suggest an 'on demand' evaluation of CEC counts right at onset of GvHD clinical symptoms to possibly help differentiate GvHD from other non-endothelial complications. We confirm that CEC changes are a suitable biomarker to monitor endothelial damage in patients undergoing allo-transplantation and hold the potential to become a useful tool to support GvHD diagnosis (ClinicalTrials.gov NCT02064972).Bone Marrow Transplantation advance online publication, 11 September 2017; doi:10.1038/bmt.2017.194
- âŠ