98 research outputs found

    A novel filtration system for point of care washing of cellular therapy products

    Get PDF
    The cell therapy industry would greatly benefit from a simple point of care solution to remove Dimethyl Sulfoxide (DMSO) from small volume thawed cell suspensions prior to injection. We have designed and validated a novel dead-end filtration device, which takes advantage of the higher density of thawed cell suspensions to remove the DMSO and protein impurities from the cell suspension without fouling the filter membrane. The filter was designed to avoid fluid circuits and minimize the surface area that is contacted by the cell suspension, thus reducing cell losses by design. The filtration process was established through optimization of the fluid flow configuration, backflush cycles and filter geometry. Overall, this novel filtration device allows for a 1 mL of thawed cryopreserved cell suspensions, containing 107 cells of a foetal lung fibroblast cell line (MRC-5), to be washed in less than 30 minutes. More than 95% of the DMSO and up to 94% of the Albumin- Fluorescein-Isothiocyanate content can be removed while the viable cell recovery is higher than 80%. We have also demonstrated that this system can be used for bone marrow-derived human mesenchymal stem cells with more than 73% cell recovery and 85% DMSO reduction. This is the first time that a dead end (normal) filtration process has been used to successfully wash high density human cell suspensions. In practice, this novel solid-liquid separation technology fills the need for small volume washing in closed processing systems for cellular therapies

    Bioprocess considerations for T cell therapy: Investigating the impact of agitation, dissolved oxygen and pH on T cell expansion and differentiation

    Get PDF
    Adoptive T‐cell therapy (ACT) has emerged as a promising new way to treat systemic cancers such as acute lymphoblastic leukemia. However, the robustness and reproducibility of the manufacturing process remains a challenge. Here, a single‐use 24‐well microbioreactor (micro‐Matrix) was assessed for its use as a high‐throughput screening tool to investigate the effect and the interaction of different shaking speeds, dissolved oxygen (DO), and pH levels on the growth and differentiation of primary T cells in a perfusion‐mimic process. The full factorial design allowed for the generation of predictive models, which were used to find optimal culture conditions. Agitation was shown to play a fundamental role in the proliferation of T cells. A shaking speed of 200 rpm drastically improved the final viable cell concentration (VCC), while the viability was maintained above 90% throughout the cultivation. VCCs reached a maximum of 9.22 × 106 cells/ml. The distribution of CD8+ central memory T cells (TCM), was found to be largely unaffected by the shaking speed. A clear interaction between pH and DO (p < .001) was established for the cell growth and the optimal culture conditions were identified for a combination of 200 rpm, 25% DO, and pH of 7.4. The combination of microbioreactor technology and Design of Experiment methodology provides a powerful tool to rapidly gain an understanding of the design space of the T‐cell manufacturing process

    An automated single-use platform for production of patient specific cell therapies

    Get PDF
    The preparation of autologous cells for therapy requires the aseptic expansion and differentiation of stem cells at relatively small scale. For the maximum number of patients to benefit methods for the parallel processing of large numbers of patient biopsies are required. This presentation outlines an automated, single-use approach to cell expansion and modeling tools that can give clinicians an early indication of when sufficient cells will be available for implanting back into the patient. The approach is illustrated for the expansion of human Mesenchymal Stromal Cells (hMSC). These have the potential to differentiate into lineages of mesoderm origin, such as osteogenic, chondrogenic, and adipogenic lineages, presenting a promising potential for regenerative medicine applications. One of the major challenges associated with delivering hMSC to the clinic is the ability to propagate the cells in sufficient numbers for regenerative medicine therapies. Some of the reasons for this are, the low number of cells isolated from primary tissues, low growth rates in vitro, and the low population doubling limit of these cells before undirected differentiation and senesce occurs. The experimental studies describe the optimization of hMSC culture conditions in single-use, microwell formats and the use of a previously developed laboratory automation platform [1] to help reduce the time required between biopsy and treatment. Results from related studies on control of microenvironmental conditions to optimize differentiation will also be shown for comparison. [2] In the case of hMSCs, cell growth kinetics were studied for cells isolated from frozen bone marrow samples from different donors and over sequential passages. Growth rates were found to be an intrinsic characteristic of the donor, decreasing consistently with increasing passage number, or population doublings. The overall duration of the cell expansion process in the automated platform was optimized by studying the effect of controlled parameters on cell growth kinetics and differentiation. The effect of inoculation cell density, feeding strategy, pH, and temperature on cell growth was determined, and optimum parameters were chosen to reduce the overall processing time needed to achieve the required number of cells for autologuous cell therapy. The quality of the final cell population was shown to be maintained throughout the cell expansion process based on cell surface marker expression. For clinical applications the inability to predict the growth rate of isolated cells from a patient at each stage of the cell expansion provides a major obstacle towards the design of a time based automated bioprocess. In order to define processing times for the overall cell expansion of hMSC in an undifferentiated state, a simple mathematical model was developed to describe the kinetics of growth for each passage based on the parameters obtained from passage one after hMSC isolation from an individual patient. This model can forward predict processing times at each passage for each donor, taking into consideration the decrease in growth rates associated with the increase in cell doublings. The validity of the model was tested with hMSC isolated from five different donors, and proven to be accurate in all cases. [1] Hussain, W., Moens, N., Veraitch. F.S., Hernandez, D., Mason, C. and Lye, G.J. (2013). Reproducible culture and differentiation of mouse embryonic stem cells using an automated microwell platform. Biochem. Engng. J., 77: 246-257. [2] Mondragon-Teran, P., Tostoes, R., Mason, C., Lye, G.J. and Veraitch, F.S. (2013). Oxygen-controlled automated neural differentiation of mouse embryonic stem cells. Regen. Med., 8: 171-182

    Early retinal differentiation of human pluripotent stem cells in microwell suspension cultures

    Get PDF
    OBJECTIVE: To develop a microwell suspension platform for the adaption of attached stem cell differentiation protocols into mixed suspension culture. RESULTS: We adapted an adherent protocol for the retinal differentiation of human induced pluripotent stem cells (hiPSCs) using a two-step protocol. Establishing the optimum embryoid body (EB) starting size and shaking speed resulted in the translation of the original adherent process into suspension culture. Embryoid bodies expanded in size as the culture progressed resulting in the expression of characteristic markers of early (Rx, Six and Otx2) and late (Crx, Nrl and Rhodopsin) retinal differentiation. The new process also eliminated the use of matrigel, an animal-derived extracellular matrix coating. CONCLUSIONS: Shaking microwells offer a fast and cost-effective method for proof-of-concept studies to establish whether pluripotent stem cell differentiation processes can be translated into mixed suspension culture

    Robust, microfabricated culture devices with improved control over the soluble microenvironment for the culture of embryonic stem cells.

    Get PDF
    The commercial use of stem cells continues to be constrained by the difficulty and high cost of developing efficient and reliable production protocols. The use of microfabricated systems combines good control over the cellular microenvironment with reduced use of resources in process optimization. Our previously reported microfabricated culture device was shown suitable for the culture of embryonic stem cells but required improvements to robustness, ease of use and dissolved gas control. In this report we describe a number of improvements to the design of the microfabricated system to significantly improve the control over shear stress and soluble factors, particularly dissolved oxygen. These control improvements are investigated by finite element modeling. Design improvements also make the system easier to use and improve the robustness. The culture device could be applied to the optimization of pluripotent stem cell growth and differentiation, as well as the development of monitoring and control strategies and improved culture systems at various scales

    Development of a Multiplexed Microfluidic Platform for the Automated Cultivation of Embryonic Stem Cells.

    Get PDF
    We present a multiplexed platform for a microfabricated stem cell culture device. The modular platform contains all the components to control stem cell culture conditions in an automated fashion. It does not require an incubator during perfusion culture and can be mounted on the stage of an inverted fluorescence microscope for high-frequency imaging of stem cell cultures. A pressure-driven pump provides control over the medium flow rate and offers switching of the flow rates. Flow rates of the pump are characterized for different pressure settings, and a linear correlation between the applied pressure and the flow rate in the cell culture devices is shown. In addition, the pump operates with two culture medium reservoirs, thus enabling the switching of the culture medium on-the-fly during a cell culture experiment. Also, with our platform, the culture medium reservoirs are cooled to prevent medium degradation during long-term experiments. Media temperature is then adjusted to a higher controlled temperature before entering the microfabricated cell culture device. Furthermore, the temperature is regulated in the microfabricated culture devices themselves. Preliminary culture experiments are demonstrated using mouse embryonic stem cells

    Real-time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device

    Get PDF
    Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real-time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time-course data for bulk and peri-cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non-invasive and label-free approach. Additionally, we confirmed non-invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell(-1) s(-1) , and 5 and 35 amol cell(-1) s(-1) were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non-invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell-based therapies

    A guide to manufacturing CAR T cell therapies

    Get PDF
    In recent years, chimeric antigen receptor (CAR) modified T cells have been used as a treatment for haematological malignancies in several phase I and II trials and with Kymriah of Novartis and Yescarta of KITE Pharma, the first CAR T cell therapy products have been approved. Promising clinical outcomes have yet been tempered by the fact that many therapies may be prohibitively expensive to manufacture. The process is not yet defined, far from being standardised and often requires extensive manual handling steps. For academia, big pharma and contract manufacturers it is difficult to obtain an overview over the process strategies and their respective advantages and disadvantages. This review details current production processes being used for CAR T cells with a particular focus on efficacy, reproducibility, manufacturing costs and release testing. By undertaking a systematic analysis of the manufacture of CAR T cells from reported clinical trial data to date, we have been able to quantify recent trends and track the uptake of new process technology. Delivering new processing options will be key to the success of the CAR-T cells ensuring that excessive manufacturing costs do not disrupt the delivery of exciting new therapies to the wide possible patient cohort

    Leg ulceration due to cutaneous melioidosis in a returning traveller

    Get PDF
    A 26-year-old man, returned to the UK having travelled extensively in Asia. He was referred with a 3-month history of distal leg ulceration following an insect bite while in Thailand. Despite multiple courses of oral antibiotics, he developed two adjacent ulcers. A wound swab isolated an organism identified as Burkholderia thailandensis The histology of the skin biopsy was non-specific. A diagnosis of cutaneous melioidosis was made, based on clinical and microbiological grounds. The ulcers re-epithelialised on completion of intravenous ceftazidime followed by 3 months of high dose co-trimoxazole and wound care. Many clinical microbiology laboratories have limited diagnostics for security-related organisms, with the result that B. pseudomallei, the causative bacterium of melioidosis, may be misidentified. This case highlights the importance of maintaining high levels of clinical suspicion and close microbiological liaison in individuals returning from South-East Asia and northern Australia with such symptoms

    Optimization of the Nutritional Environment for Differentiation of Human Induced Pluripotent Stem Cells using Design of Experiments – A Proof of Concept

    Get PDF
    The utilization of human-induced pluripotent stem cells (hiPSCs) in cell therapy has a tremendous potential but faces many practical challenges, including costs associated with cell culture media and growth factors. There is an immediate need to establish an optimized culture platform to direct the differentiation of hiPSCs into germ layers in a defined nutritional microenvironment to generate cost-effective and robust therapeutics. The aim of this study was to identify the optimal nutritional environment by mimicking the in vivo concentrations of three key factors (glucose, pyruvate, and oxygen) during the spontaneous differentiation of hiPSCs derived from cord blood, which greatly differ from the in vitro expansion and differentiation scenarios. Moreover, we hypothesized that the high glucose, pyruvate, and oxygen concentrations found in typical growth media could inhibit the differentiation of certain lineages. A design of experiments was used to investigate the interaction between these three variables during the spontaneous differentiation of hiPSCs. We found that lower oxygen and glucose concentrations enhance the expression of mesodermal (Brachyury, KIF1A) and ectodermal (Nestin, β-Tubulin) markers. Our findings present a novel approach for efficient directed differentiation of hiPSCs through the manipulation of media components while simultaneously avoiding the usage of growth factors thus reducing costs
    corecore