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Abstract 23 

 24 

The cell therapy industry would greatly benefit from a simple point of care solution to remove 25 

Dimethyl Sulfoxide (DMSO) from small volume thawed cell suspensions prior to injection. We have 26 

designed and validated a novel dead-end filtration device, which takes advantage of the higher density 27 

of thawed cell suspensions to remove the DMSO and protein impurities from the cell suspension 28 

without fouling the filter membrane. The filter was designed to avoid fluid circuits and minimize the 29 

surface area that is contacted by the cell suspension, thus reducing cell losses by design.  30 

The filtration process was established through optimization of the fluid flow configuration, backflush 31 

cycles and filter geometry. Overall, this novel filtration device allows for a 1 mL of thawed 32 

cryopreserved cell suspensions, containing 107 cells of a foetal lung fibroblast cell line (MRC-5), to 33 

be washed in less than 30 minutes. More than 95% of the DMSO and up to 94% of the Albumin-34 

Fluorescein-Isothiocyanate content can be removed while the viable cell recovery is higher than 80%. 35 

We have also demonstrated that this system can be used for bone marrow-derived human 36 

mesenchymal stem cells with more than 73% cell recovery and 85% DMSO reduction. This is the first 37 

time that a dead end (normal) filtration process has been used to successfully wash high density 38 

human cell suspensions. In practice, this novel solid-liquid separation technology fills the need for 39 

small volume washing in closed processing systems for cellular therapies. 40 

 41 

  42 
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1. Introduction 43 

The cryopreservation of cellular therapy products is usually performed by controlled-rate freezing (1-44 

5°C/min) in the presence of DMSO, which is the prefered cryopreservation agent (CPA) in virtually 45 

every cryopreservation solution (Rowley 2009). This is due to its efficient diffusion across the cell 46 

membrane coupled with the ability to prevent intracellular ice formation and osmotic stress during 47 

slow rate freezing (Mazur 1984). In the treatment of blood disorders the cell product may be infused 48 

to patients without any reduction in DMSO concentration even though the presence of this CPA has 49 

been shown to cause nausea, vomiting, cardiac arrhythmia (Cox et al. 2012) and, less frequently, more 50 

severe adverse reactions such as neurotoxicity (Abdelkefi et al. 2009), cardiac arrest or epileptic 51 

seizure (Cox et al. 2012). Thus, safety concerns are raised when the cellular product consists of a 52 

small volume (<10 mL) cell suspension which will be injected into a solid tissue such as the brain or 53 

heart (FDA 1997). Such an injection is likely to expose the patient’s cells to a much higher DMSO 54 

concentration than a blood stream infused product. Although there is no safety data for concentrated 55 

DMSO injections in humans, there is published work in animals (Galvao et al. 2014) and brain tissue 56 

culture (Tamagnini et al. 2014). These data strongly suggest that a reduction in DMSO concentration 57 

is required for cell therapies which are administered via injection into solid tissues and should be 58 

performed even in infused cell therapies. 59 

To reduce the DMSO concentration in thawed cell suspensions the most common process is open lab 60 

centrifugation. This process is only acceptable in a laminar flow chamber placed in a grade B 61 

cleanroom background, which represents an unacceptable financial burden for the current Point of 62 

Care (POC) sites such as hospitals or clinics that do not have a cell-processing facility. Another 63 

solution is the use of closed centrifugal systems such as the COBE 2991 (Terumo BCT, Colorado, 64 

USA) or Sepax S-100 devices (Biosafe S.A., Eysins, Switzerland). These can be used to separate 65 

mononuclear cells from red blood cells or as cell washing devices, reaching 97% removal of the 66 

DMSO content (Rodríguez et al. 2004) and a total nucleated cell recovery of 75%  in cryopreserved 67 

peripheral blood progenitor cell products for autologous infusion (Sánchez‐Salinas et al. 2012). While 68 

these centrifuge-based systems are efficient, they are expensive and not amenable to small scale cell 69 
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processing. Hanna and colleagues have described a microfluidic device which removes up to 70% of 70 

the initial DMSO concentration from fresh cell suspensions spiked with the cryoprotectant in a three-71 

stream diffusion system (Hanna et al. 2012). The post-wash viable cell recovery reported by these 72 

authors was above 95%. Recently, a dilution-filtration system has been reported by Zhou et al. This 73 

system relies on a tangential flow filtration system (TFF) which enables the removal of 93% of the 74 

CPA (glycerol in this instance) from thawed human red blood cells with a viable cell recovery of 91% 75 

(Zhou et al. 2011). The main disadvantage of TFF based methods is that they are mostly used for 76 

volumes starting at hundreds of mL or litres, and any scale down design of a TFF will include an 77 

external circuit where cells are likely to be lost either by liquid adsorption to the material or shear 78 

(Jaouen et al. 1999; Kuo et al. 2010). Overall, there is an unmet need for a small scale solid-liquid 79 

separation technologies which are cost-effective, simple to operate and enable a high cell recovery. 80 

In this work, we have designed and validated a novel dead end filtration device for the removal of 81 

DMSO from 1 mL thawed cell suspensions. A typical dead-end filtration operation produces an 82 

exponential pressure increase in the retentate chamber due to the progressive membrane clogging by 83 

the retained cells (Rushton et al. 2000; Xu and Chellam 2005). However, it is also a simple system 84 

with no moving parts and thus amenable to become a cost-efficient closed point of care solution for 85 

cell washing. The location of the filter membrane on top of the cell suspension and the non-turbulent 86 

flow allowed the thawed cell suspension to form a bed at the bottom of the filter device and limit the 87 

contact of the cells with the filter membrane, thus enabling the dead end filtration to progress for long 88 

enough to remove more than 95% of the DMSO. This device was also designed to have a minimal 89 

contact area with cells, to avoid cell losses due to liquid adsorption into long fluidic circuits. With this 90 

minimal surface area approach the viable cell recoveries were above 80%, after the filtration of 91 

thawed 1mL cell suspensions. 92 

2. Materials and Methods 93 

2.1. Cell culture and cryopreservation 94 

The human lung fibroblast cell line MRC-5 (ATCC Catalog No. CCL-171) was used as a model cell 95 

line throughout this work. These cells were cultured for a maximum of 40 population doublings (PD) 96 

as these cells can reach 42 PD without senescence, according to the supplier. The cells were cultured 97 
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in Eagle’s Minimum Essential Medium (EMEM, M5650 Sigma-Aldrich UK) supplemented with 10% 98 

Foetal Bovine Serum (FBS, Seralab UK), 1% Glutamine and 1% MEM Non-Essential Amino Acids 99 

(NEAA, GIBCO, UK) using Nunc T-flasks with 175 cm
2
 surface area (Thermo Scientific, UK). Bone 100 

Marrow-derived human Mesenchymal Stromal Cells (hMSC) from 2 different donors were purchased 101 

from Lonza (PoieticsTM human mesenchymal stem cells) and cultured in complete growth medium: 102 

DMEM low glucose (21885-025, Life Technologies, UK) supplemented with 10% FBS, 1% NEAA 103 

and 1 ng/mL recombinant human basic Fibroblast Growth Factor (bFGF, R&D Systems, MN, US). 104 

The hMSCs were cultured for expansion up to passage 7, to minimize the senescence of the 105 

population and used as a cell therapy-relevant model to validate the filtration system developed in this 106 

work. The hMSC were differentiated using GIBCO® StemPro reagents (GIBCO,UK): For 107 

adipogenic, chondrogenic and osteogenic differentiation, hMSCs were seeded into 12-well plates at 1 108 

x 104 cells/cm2, 1.6 x 107 cells/mL 10 µL droplets and 5 x 103 cells/cm2, respectively. After 24h in 109 

culture in complete growth medium, the media was discarded and 1 ml of Adipogenesis, 110 

Chondrogenesis or Osteogenesis Differentiation Medium (StemPro Differentiaiton Kit, GIBCO, 111 

Invitrogen) were added to each well. Medium was fully exchanged every 3 days and at day 21 cells 112 

were washed in 1X PBS and fixed at room temperature, with 4% paraformaldehyde (PFA), for 10 113 

minutes for adipogenesis cultures and 30 minutes for chondrogenesis and osteogenesis cultures. For 114 

adipogenesis cultures, 60% isopropanol was added to the cells and let sit for 5 minutes. Cells were 115 

then stained with a filtered solution of 0.3% w/v Oil Red O/isopropanol in distilled water 3:2 for 5 116 

minutes, rinsed under tap and counterstained with hematoxilin for 1 minute. For chondrogenesis 117 

cultures, 1% Alcian Blue solution prepared in 0.1M HCl was used to stain the chondrocytes. After 30 118 

minutes, cells were rinsed twice in 0.1M HCL and then under running tap water. For osteogenesis, . 119 

2% Alizarin Red S solution (pH 4.2) was added for 5 minutes and then the wells were carefully rinsed 120 

with distilled water to avoid the micromasses disruption. 121 

For cryopreservation, cells were exposed to Trypsin (Sigma-Aldrich, UK) for 5 min at 37 °C and the 122 

reaction was stopped by adding 2 volumes of EMEM (supplemented with 10% FBS) per volume of 123 

trypsin. The resulting cell suspension was centrifuged at 300g for 5 min at room temperature, washed 124 

with PBS and centrifuged again under the same conditions. The washed cell pellet was resuspended in 125 

Page 5 of 30

http://mc.manuscriptcentral.com/term

Journal of Tissue Engineering and Regenerative Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

6 

 

cold (2-8 °C) CryoStor™ containing 5% v/v of DMSO (CS5, BioLife Solutions, WA, USA) to yield 1 126 

mL single cell suspension containing 10-20 million cells/mL. This cell suspension was dispensed into 127 

3 mL Crystal™ vials (Aseptic Technologies, Belgium), incubated for 10 minutes on ice and then 128 

transferred to a -80 °C freezer where it was cooled at an approximate rate of -1 °C/min, using a 129 

CoolCell container (BioCision, CA, US) and kept up to a maximum of 1 month before use. 130 

2.2. Device design and operation 131 

The filter devices were designed using AutoCad 2011 (Autodesk, CA 94903, USA) and manufactured 132 

by machining in UCL’s Biochemical Engineering workshop, using either Poly(methyl methacrylate) 133 

(PMMA) or Stainless Steel 316 (SS) as a the base material, and by injection molding using the 134 

Protomold service from Protolabs, UK. The base material used for injection molding was Cyclic 135 

Olefin Co-polymer (COC). 136 

All the devices were designed to allow the 1 mL thawed cell suspension to form an undisturbed bed 137 

while the washing buffer flowed through the cell suspension. This configuration minimized and 138 

delayed the progressive filter clogging typical in a dead end filtration process. The design shown in 139 

Figure 1A enabled the formation of this cell bed by localizing the filter membrane above the cell 140 

suspension and ensuring that the lower chamber had a higher volume than that same loaded cell 141 

suspension, such that during the wash operation there was a decreasing cell concentration from the top 142 

surface of the cell bed to the filter membrane (Figure 1B, top). The wash step was performed by 143 

flowing wash buffer (PBS) from the bottom and lateral inlets of the lower chamber (Figure 1B, top). 144 

The semi-conical shape of this chamber was designed to enable the post wash gas phase volume 145 

reduction of the cell suspension: this shape stabilizes an injected air bubble which occupied the top 146 

part of the bottom chamber, leaving behind a volume reduced cell suspension (Figure 1B, middle) that 147 

was collected directly into a syringe (Figure 1B, bottom); these process steps are shown in the 148 

supplementary movies S1-3 (A with dye and B with cells) and S4. The fixed process inputs and 149 

parameters are listed in Table I; the operating temperature was kept at 21 ± 2°C. 150 

2.3. Cell counts 151 

The cell numbers and viability were counted using a Vi-CELL Cell Viability Analyser (Beckman 152 

Coulter, UK) before and after the cell suspension processing. The results are shown as percent viable 153 
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cell recovery (VCR) and correspond to the ratio between total viable cells after processing and total 154 

viable cells before processing.  155 

2.4. DMSO measurement 156 

The concentration of DMSO in the filtrate and retentate was measured by reverse phase high 157 

performance liquid chromatography (HPLC) using an Agilent 1200 series device (Agilent 158 

Technologies UK Limited) under the control of the Agilent Chemstation software. A 4 mm x 125 mm 159 

(internal diameter x length) Nucleosil C18 column with a particle size of 5 µm (Sigma-Aldrich, UK) 160 

was used as the stationary phase, while the mobile phase was based on a previously published 161 

protocol (Thumm et al. 1991). Briefly, an aliquot was taken from the filtrate or retentate sample and 162 

diluted 1:20 in 0.1% (v/v) Trifluoro Acetic Acid (TFA, Sigma-Aldrich UK). Calibration curves of CS 163 

5 were prepared at the appropriate dilution and analyzed in parallel with the samples. The elution 164 

profile consisted of 100% distilled water in the first 5 min followed by a linear gradient of 165 

water/acetonitrile until 100% of acetonitrile was reached at 7 min; the reverse gradient was applied to 166 

reach 100% water at 9 min and maintained until 15 min. The DMSO peak was detected (210 nm 167 

detection wavelength) at 3-5 min of elution time. All results are presented as the ratio 
�

��

, where C and 168 

C0 are the final and initial concentration of DMSO, respectively. 169 

2.5. FITC-Albumin experiments and quantification 170 

To assess the removal of larger molecular weight molecules, 20 µL of conjugated Albumin-171 

Fluorescein Isothiocyanate (FITC) (A9971, Sigma UK) at a concentration of 5 mg/mL in CS 5 were 172 

added to the 1 mL cell suspension immediately after thaw and before the filtration process. The 173 

Albumin-FITC concentrations were measured using a FluoStar Optima microplate reader (excitation 174 

450 nm, emission 544 nm). Calibration curves of Albumin FITC in CS 5 were prepared at the 175 

appropriate dilution and analyzed in parallel with the samples. All results are presented as the ratio 
�

��

, 176 

where C and C0 are the final and initial concentrations of FITC-Albumin, respectively. 177 

2.6. Pressure Measurements 178 

The pressure in the lower chamber of the system was measured against the atmospheric pressure using 179 

either a manual or a digital manometer with data-logging capabilities (Sper Scientific, AZ US). 180 
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2.7. Filtration model 181 

A modified form of the diafiltration equation was used to model and predict solute removal from the 182 

cell suspensions: 183 

�

��

= �
�
	×�

�

×�

= �
��×� Equation 1 

where F is the flow rate in mL/min, t is time in min, VC is the lower (cell-containing) chamber 184 

volume, N is the number of diavolumes, defined as the quocient between the total volume used for 185 

filtration and the volume of the filtration chamber, and k is a wash efficiency parameter which is 186 

dependent on the geometry of the device. 187 

2.8. Computational Fluid Dynamics 188 

The commercial software package COMSOL Multiphysics 5.0 (Hatfield, Comsol, UK) was used to 189 

simulate the velocity, pressure and DMSO profiles in the filter device. The laminar flow application 190 

mode within the COMSOL Multiphysics software was chosen to simulate the velocity and pressure, 191 

whereas the mass transfer for diluted species application mode was chosen to simulate the DMSO 192 

profile. To lower the computer memory requirements of the overall simulation, the flow field is 193 

simulated first as the viscosity and densities of the culture medium containing DMSO are considered 194 

constant (relatively low species concentration). The solved flow field is then saved and coupled with a 195 

mass transfer model, which describes DMSO convection/diffusion in the filter device.  196 

In all simulations, the boundaries of the filtering device were meshed with 52155 triangular elements 197 

(extra fine mesh; default settings) and its domain with 376906 quadrilateral elements (normal mesh 198 

option; default settings) using the free mesh option of COMSOL Multiphysics’s mesh generator. The 199 

number of degrees of freedom was 377702. The convergence was tested by a two-fold increase in the 200 

number of elements. The velocity, pressure and DMSO concentration simulated by using the new 201 

mesh were agreed at the three significant figures level with the velocity, pressure and DMSO 202 

concentration simulated by using the default mesh. The simulation results are presented as contour 203 

plots, blue represents areas of low DMSO concentration and red represents areas of high values for 204 

DMSO concentration. 205 

2.9. Flow Cytometry 206 

Page 8 of 30

http://mc.manuscriptcentral.com/term

Journal of Tissue Engineering and Regenerative Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

9 

 

The post filtration multipotency of the hMSCs was assessed using an hMSC phenotyping kit 207 

(Miltenyi Biotec, Surrey, UK) flow cytometry assay. Briefly, single cell suspensions, following wash 208 

and volume reduction using the novel filtration device, were equally divided into 7 samples. 209 

Antibodies were diluted 1:11 in 110ul buffer per 1x106 cells and incubated with the samples on ice 210 

for 30 minutes. The 7 samples for each MSC test consisted of 4 single fluorophore controls (CD105-211 

PE, CD90-FITC, CD73-APC, CD14-/CD20-/CD34-/CD45-PerCP) for compensation, a cell only 212 

sample (incubated with 110ul FACS buffer, also for 30 minutes on ice), the Isotype Control Cocktail 213 

and the MSC Phenotyping Cocktail provided in the MSC phenotyping kit (Miltenyi). After antibody 214 

labelling, cells were washed and re-suspended in 0.5ml FACS buffer in flow analysis tubes (BD 215 

Bioscience, Oxford, UK). Flow cytometery was performed using a BD LSR II flow cytometer. For 216 

analysis, at least 50,000 events were initially gated based on forward and side scatter and forward 217 

scatter height against area was used for doublet removal. The isotype control cocktail was run with the 218 

same gating strategy and MSCs defined from gating the top 1% of isotype expression. To confirm an 219 

MSC phenotype, greater than 95% expression of CD105, CD90, CD73, and less than 2% expression 220 

of CD14, CD20, CD34 and CD45 must be observed (Dominici et al. 2006). N=3 samples were run 221 

and the standard deviation calculated. 222 

2.10. Statistics 223 

The statistical analysis was performed using the Excel data analysis add-on and the GraphPad 224 

software. The p-values presented were calculated for the two tails of the normal distribution and when 225 

more than 2 groups were compared Tukey’s multicomparison test was used. The notation “n” 226 

(lowercase, not to be mistaken by uppercase “N”, the diavolumes) was used to denote the number of 227 

independent replicates. 228 

3. Results 229 

To test this new filtration device it was necessary to choose a filter medium and a pore size which 230 

minimized the rate of pressure increase during the wash operation; initial tests demonstrated that a 231 

hydrophilic Polyvinylidene fluoride (hPVDF) with a nominal pore size of 0.65 µm was a feasible 232 

starting point (data not shown). 233 
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To maximize the number of cells recovered, it was hypothesized that a backflush step between the 234 

wash and concentration steps would dislodge cells from the filter membrane and increase the post 235 

process VCR. The wash step was performed using a flow rate of 2 mL/min via the bottom inlet and 5 236 

mL/min through the lateral inlet (2/5 flow). While no significant difference in VCR was observed 237 

when this backflush step was present (compared to its absence), there were significant effects on the 238 

amount of solute removed. Figure 2A depicts the DMSO concentration in the filtrate over time, and it 239 

is visible that after the backflush step there is an increase in the DMSO concentration in the filtrate. It 240 

was hypothesized that the overall DMSO removal of the retentate could be enhanced if several 241 

backflush steps were applied during the wash phase. Figure 2B depicts the experimental design used 242 

to test this hypothesis, where 3 backflush steps were performed during a 2/5 wash for 10 min (3x 243 

backflush) and compared with a 10 min 2/5 wash with one backflush step after the wash operation (1x 244 

backflush). Figure 2C shows that the 3x backflush wash yielded a lower DMSO concentration than 245 

the 1x backflush wash, with 0.136 ± 0.003 and 0.20 ± 0.01 of the initial DMSO concentration, 246 

respectively (n=3, p<0.001). This increase in DMSO removal was also associated with a higher lower 247 

chamber pressure in the 3x backflush wash when compared with the 1x backflush wash, after 10 248 

minutes, as shown in Figure 2D. 249 

The individual contributions of the bottom and lateral flows for the DMSO removal from the cell 250 

suspension were investigated. Figure 3 shows that, after a 10 minutes wash period, the lateral flow 251 

reduces the initial amount of DMSO to 0.66 ± 0.09 (n=5) of its initial concentration. There was no 252 

significant difference between the concentration of DMSO after the bottom flow wash and the 253 

lateral+bottom (2/5) flow wash (0.25 ± 0.01, n=3 and 0.17 ± 0.06, n=3), for the 10 min wash period. 254 

However, the presence of a bottom flow results in a significantly higher DMSO reduction when 255 

compared to using lateral flow only (p<0.01). 256 

The combinatorial effect of the lateral and bottom flows (2/5 flow) on DMSO reduction was further 257 

investigated as a function of the diavolumes N (Bottom Flow x Time), as shown in Figure 4A. The 258 

curve corresponding to the 2/5 flow is in agreement with the diafiltration equation, with the wash 259 

efficiency value k being constant (R2=0.998); without the lateral flow, the bottom flow curve deviates 260 

from Equation 1, yielding lower DMSO reduction values. These differences correlate with different 261 
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pressure profiles (Figure 4B): the lateral flow of PBS leads to an increased pressure ending in 80 262 

mbar, whereas pressure in the bottom flow configuration is kept at 20 mbar or less. 263 

To be useful as part of a point of care device, this filter will be manufactured as an injection molded 264 

part, like most medical devices or bioprocessing consumables. The panels C and D in Figure 4 depict 265 

a PMMA filter device which houses an injection molded (IM) COC lower chamber whose shape is 266 

identical to the one in Figure 1A. This IM device was used to process thawed MRC-5 cell suspensions 267 

at 2 mL/min bottom flow, without lateral flow, for 24 min and the volumes, cell concentration and 268 

DMSO removal are shown in Table 2. The DMSO reduction for this data was 91 ± 2% for N=32, as 269 

shown in Figure 4A. The cell recovery and volume reduction was 84 ± 1% and 2.7 ± 0.5 fold, 270 

respectively. These results demonstrate that this filtration system can be successfully used for small 271 

volume cell suspension wash and volume reduction, with a cell recovery of more than 80%. 272 

Moreover, the use of a thermoplastic material indicates that the performance of the PMMA device is 273 

close to the performance of the consumable.  274 

The filtration device was redesigned to increase the DMSO reduction while avoiding pressure build-275 

up in the lower chamber, i.e. increasing the wash without using the lateral flow. Figure 5A shows the 276 

3 geometries of the filtration device, where M1 (mark 1) is the original design, with a lower chamber 277 

height (bottom inlet to filter membrane) of 0.8 cm and a filtration area of 3.5 cm
2
. To minimize the 278 

diffusional distances and increase the fluid velocity, the M2 geometry was designed to increase the 279 

height of the chamber by 50% (compared to M1) while maintaining a constant volume, thus 280 

decreasing the cross sectional area of the bottom flow chamber. This was achieved by changing the 281 

chamber from a round bottom to a V-bottom shape. Computational fluid dynamics (CFD) was used to 282 

model DMSO removal in M2 under the 2/5 flow configuration; the surface plot in figure 5B depicts 283 

the top view of the M2 device and it indicates that there is accumulation of DMSO in the outer area of 284 

the membrane. Again, these areas are the furthest away from the bottom flow jet and they could be 285 

designed out (or “trimmed” out) of the M2 geometry thus yielding the M3 geometry, with a 2.5 cm2 286 

area (30% decrease vs M2) and a lower chamber height of 1.5 cm (25% increase vs M2). These 287 

geometry changes had significant effects on the DMSO removal rate, as demonstrated in Figure 5C. 288 

When using only the bottom inlet to flow wash buffer through the cell suspension (solid lines) it is 289 
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visible that the amount of DMSO removed per diavolumes of buffer increases from M1 to M3. Unlike 290 

the M1 and M2 bottom flow curves, the M3 curve fits a single exponential line as described in 291 

Equation 1 (solid line, R
2
=0.97); likewise, when the lateral flow is used for the M1 and M2 292 

geometries, their DMSO reduction curves also fit a single exponential decay (solid lines, R2=0.97 for 293 

both). However, the M3 geometry, operating with bottom flow only, sustains the lower chamber 294 

pressure below 15 mbar, whereas the M1 and M2 geometries, operating with the 2/5 flow, can reach 295 

pressures of 100 and 400 mbar, respectively (Figure 5D, n=3). These data indicate that the M3 296 

geometry enables an efficient DMSO reduction while operating at low pressures. 297 

To further validate the hypothesis that the diffusional distance is the critical factor behind these 298 

increases in efficiency from M1 to M3, the differences in these geometries were factored into 299 

Equation 1. By keeping the volume of the chamber constant and increasing the height of the chamber, 300 

the whole shape becomes “thinner” along its length thereby reducing the diffusional distance and 301 

increasing the fluid velocity. As such, the increase in height is proportional to the increase in the 302 

amount of DMSO removed. To incorporate this into equation 1 it should be noted that the effect of the 303 

height implies that for the same level of DMSO removal, less diavolumes (N) are needed as the height 304 

is increased. In this way, N should be replaced by the product N×height. However, since this is an 305 

exponential term it must be dimensionless. Since N is dimensionless so should the height be; to 306 

achieve this it was noted that height=sin(α)×longer slope (as per figure 5E) and the sin(α) was used 307 

instead of the height. Thus, Equation 1 can be modified to: 308 

�

��

= �
�
	�

�

� ����

= �
��� ���� Equation 2 

The semi-logarithmic plot of 
�

��

 vs � × sin� is depicted in Figure 5F. This plot shows that the data 309 

points derived from Equation 1 in Figure 5C (M1 and M2 with lateral flow and M3 with bottom flow) 310 

can be modelled by a single curve using Equation 2 (R
2
=0.98). 311 

The M3 geometry was further characterized by its ability to reduce the amount of a model protein, 312 

albumin-FITC; After a 32 diavolumes wash the initial concentration of this protein was reduced by 94 313 

± 1% (Figure 5G). Furthermore, the viable cell recovery using M3 was 94 ± 5%, thus confirming that 314 

this geometry also enables a high cell recovery, while the volume reduction was 1.55 ± 0.08 fold 315 
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(Table 2). To assess the functionality and long-term viability of the cells after being processed, the 316 

M3 geometry was manufactured in stainless steel 316. Figure 5H demonstrates that, after a 16 317 

diavolumes wash, the MRC-5 cell line still grows at the same specific rate as fresh cells or cells which 318 

have also been thawed but processed using a bench top centrifuge (see methods). Importantly, cell 319 

counts after a 24 hour culture showed that after thawing, processing and plating 62 ± 15% of the cells 320 

(post thaw counts) survived; when no cell processing was performed and cells were directly plated in 321 

adherent flasks, the cell recovery was 58 ± 5% (n=4). 322 

To validate this geometry for cell therapy applications, hMSCs were processed using the M3 323 

geometry filtration device. The post filtration characterization of these cells was performed according 324 

to the ISCT criteria (Dominici et al. 2006) and the 3 cell runs (generated from 2 donors) showed that 325 

hMSCs retained their characteristic surface markers (Figure 6 A and B), while retaining their ability 326 

to adhere to plastic, proliferate (Figure 6E and F) and the capability for chondrogenic, osteogenic and 327 

adipogenic differentiation (Figure 6G, H and I). The viable cell recovery after these 3 runs ranged 328 

from 73 to 99%, while the DMSO removal ranged from 86-88% (Figure 6 C and D).  329 

4. Discussion 330 

In this work, we have designed and characterized a filtration system to process thawed cell 331 

suspensions which removes more than 90% of the DMSO and recovers more than 80% of the viable 332 

cells. Most importantly, this filtration system does not require an outside loop like a TFF system, thus 333 

minimizing the shear stress that cells are exposed to and the area where liquid can be lost by 334 

adsorption. 335 

The central element of the filter housing design (Figure 1A) is the laminar flow that is established at 336 

these dimensions and flow velocities. While it is visible that the cell suspension has settled at the end 337 

of the filtration process, it is unlikely that cell settling can be faster than the flow rate of wash buffer 338 

from the bottom inlet.  The average linear velocity of wash buffer crossing the membrane from the 339 

bottom flow is 0.57 cm/min while the average cell settling velocity is at least one order of magnitude 340 

below this velocity (Chalmers et al. 1999). Another possibility is that the settling velocity of the cells 341 

is increased in the Cryostor media; while this is true in absolute terms, because the CS5 is hypertonic, 342 
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it is the density difference between the cells in CS5 and the CS5 medium that is relevant for the 343 

settling velocity. Thus, it is expected that the density differences between fresh cells in PBS and 344 

thawed cells in CS5 are the same; this was confirmed by an isopycnic centrifugation using a Percoll 345 

gradient (Supplementary Figure 1) which confirmed that the density of the MRC-5 cells in CS5 is 346 

between 1.04 and 1.06 g/mL, whereas the literature reports a similar density for these cells in PBS 347 

(1.05 g/mL) (Birnie and Rickwood 1980). 348 

Using the lateral flow configuration, the DMSO concentration was reduced to 0.66 of its initial value 349 

(Figure 4); interestingly, this value is the same as the ratio of the cell suspension volume to the lower 350 

chamber volume (1mL/1.5mL), which strongly suggests that the lateral flow alone does not remove 351 

any significant amount of DMSO after 10 minutes. Nevertheless, the addition of lateral flow to the 352 

bottom flow (2/5 flow) seems to provide a more efficient mixing for both M1 and M2 geometries, and 353 

thus a better reduction in DMSO concentration, when compared with using the bottom flow only 354 

(Figure 5C). These results follow the same trend as the use of increased backflush cycles to enhance 355 

DMSO reduction (Figure 2), also at the expense of higher pressure differences. Taken together, these 356 

two data sets strongly suggest that both the lateral flow and the backflush cycles increase the DMSO 357 

removal, by dispersing the cell bed that is established if bottom flow only is used. The design changes 358 

that lead to the M3 geometry had the goal of avoiding the dispersion of the cell bed that results in 359 

increased lower chamber pressures This was accomplished by prioritizing the minimization of the 360 

average diffusional length and the maximization of the fluid velocity. The M3 geometry, while having 361 

a lower volume reduction capability when compared to M1, does not require lateral flow to have a 362 

single exponential wash profile, as described by equation 1, while washing more than 95% of the 363 

DMSO using less diavolumes; using only one inlet to flow the wash buffer makes the operation 364 

simpler and will decrease the manufacturing cost of the POC device. The empirical model described 365 

by Equation 2 validates the aforementioned design hypothesis, as depicted in Figure 5F; when the 366 

DMSO removal curve fits equation 1, the different geometries can be normalized to the distance 367 

between the filter membrane and the bottom flow inlet. Both the M1 and M2 geometries DMSO 368 

removal data points shift to the right of the curve in Figure 5F when only bottom flow is used, a result 369 

which can be explained by cell settling in a low shear environment. The M3 filtration device was also 370 
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shown to remove up to 94% of a model protein, Albumin-FITC (Figure 5 G); this ability to removes 371 

higher molecular weight contaminants from cell suspensions can be of high value when the whole cell 372 

therapy process is considered. 373 

The processing of hMSCs (Figure 6) demonstrated the capability of this novel filtration device for 374 

small volume cell wash, using cells relevant for cell therapy. Despite the DMSO removal efficiency 375 

being lower than for the MRC-5 cells wash, 88% of the DMSO was removed from hMSC cell 376 

suspensions. This lower washing efficiency can be attributed to different biophysical characteristics, 377 

namely cell size, and it is a clear area of research in the development of this technology. Another 378 

point for future research is how to have sterility as a release criterion for the cellular therapies, since 379 

this takes about 24h to be tested and the therapies need to be administered within minutes. 380 

In a broader sense, a simple solid-liquid separation device for small volumes is a key enabling 381 

technology to make the distributed manufacturing of cellular therapies possible. 382 
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Table Legends 448 

Table 1 – Fixed inputs and parameters for the operation of the filtration device. 449 

 450 

Table 2 – Viable cell recovery, volume reduction and cell suspension viability after the filtration 451 

operation, under 2mL/min bottom flow for 24 minutes, without lateral flow, for the injection molded 452 

version of the filtration device. 453 

 454 

Table 3 – Viable cell recovery, volume reduction and cell suspension viability using the M3 455 

geometry, under 2 mL/min bottom flow for 24 min, without lateral flow.  456 
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Figure Legends 457 

Figure 1 – Filtration device design and fluid flow. A)- CAD drawing of the filtration device housing, 458 

divided in a top and bottom part (A, top); when the device is assembled (A, bottom) the filter is 459 

located between the two parts and the cell suspension is introduced into the bottom, where it is 460 

washed, concentrated and loaded into a syringe (B, Supplementary videos). Panel C) depicts the fluid 461 

flow in the device: for visualization purposes, a red dyed PBS solution was used to wash 1 mL of a 462 

(transparent) cell-free CryoStor5 solution (the full video is available in Supplementary Video S2A). 463 

This frame corresponds to t=1s in the wash process. 464 

Figure 2 – DMSO removal is enhanced by backflush frequency. The filter device was operated for 10 465 

min in the wash mode with a 2 mL/min bottom flow rate and a 5 mL/min cross flow rate; after this 466 

wash step and before the concentration step a backflush was performed to dislodge cells from the 467 

filter membrane (see methods). The concentration of DMSO in the collected filtrate fractions 468 

increases after backflush (A). The backflush step was repeated 3 times throughout the wash period 469 

(3xbackflush) and compared to a single backflush after the wash step (1xbackflush) (B) for the 470 

amount of DMSO left in the cell suspension (lower chamber, which contains the retentate) (C) and the 471 

pressure difference generated in the lower chamber (D). ***, p<0.001. 472 

Figure 3 – Lateral flow wash alone shows a limited DMSO reduction. The filter device was operated 473 

for 10 minutes in the wash mode with a 2 mL/min bottom flow rate without cross flow (20 mL, n=3), 474 

with a 5 mL/min lateral flow rate without bottom flow (Lateral 5 mL/min, n=3) and with a 2 mL/min 475 

bottom flow rate and a 5 mL/min cross flow rate (2/5 flow, n=6). ***, p<0.001 (Tukey’s 476 

multicomparison test). 477 

Figure 4 – Synergistic effect of the lateral and bottom flows. The presence of lateral flow during cell 478 

washing yields a DMSO reduction profile described by a single exponential function, as predicted by 479 

equation 1 (A, closed squares, n≥3 for all data points), whereas in the absence of the lateral flow, the 480 

bottom flow wash does not fit the equation 1 model (A, closed circles, n≥3 for all data points). The 481 

typical pressure profiles for these 2 wash modes show that the presence of cross flow also leads to 482 

pressure build-up in the lower chamber, unlike the bottom flow only operation mode (B). To mimic 483 
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the final thermoplastic product the bottom flow chamber geometry was injection molded (C, purple) 484 

to fit a PMMA housing (C, gray). 485 

Figure 5 – Redesigning the filtration device for improved DMSO removal. The original filtration 486 

device was redesigned by changing the geometry of the bottom chamber which holds the cell 487 

suspension, which led to changes in the distance between the bottom inlet and the filter membrane, 488 

and filtration area (A). A CFD analysis on the M2 geometry revealed “dead zones” where the DMSO 489 

was being removed with less efficiency (B). The 3 different geometries were evaluated for their 490 

DMSO reduction capability (C, n≥3 for all data points), operated with (open symbols) and without 491 

(closed symbols) lateral flow, except for M3, where lateral flow lead to clogging (data not shown); the 492 

final pressure in the lower chamber, after 24 min, also revealed differences between geometries and 493 

wash modes (D, n=3 for all data points). The sine of the angle α, formed between the horizontal plane 494 

and the lower chamber slope that connects the bottom and lateral inlets (E), is different between 495 

devices; when the number of diavolumes is multiplied by the sin(α), specific for each device, the 496 

curves that obey equation1 in C follow a single exponential decay empirical model, as described by 497 

equation 2 (F). The M3 geometry was assessed for its ability to reduce albumin-FITC by washing a 498 

cell suspension for 24 minutes at 2mL/min bottom flow (G); furthermore, the cellular proliferation 499 

after filtration processing, using the M3 geometry (n=4), was compared with post-centrifugation 500 

processing (n=5) and fresh cell culture processing (i.e. cell counts during passaging, n=5) by 501 

calculating the specific growth rate µ (day-1). 502 

Figure 6 – hMSC post filtration recovery, proliferation and characterization. hMSCs were processed 503 

using the M3 geometry filtration device. The post filtration characterization after 3 cell runs 504 

(generated from 2 donors) was performed according to the ISCT criteria: cell surface markers (Figure 505 

6 A, individual flow cytometry histograms, and B, aggregate results from the 3 cell runs), adherence 506 

to plastic (Figure 6E, scale bar=400 mm) and the capability for chondrogenic, osteogenic and 507 

adipogenic differentiation (Figure 6G, H, scale bar=100 mm, and I, scale bar=50 mm, respectively). 508 

The viable cell recovery, DMSO removal and hMSC growth rates after filtration are displayed in 509 

Figure 6 C, D and F, respectively).  510 
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Supplementary Figure 1 – Isopycnic gradient centrifugation of MRC-5 cells in CryoStor 5. A cell 511 

suspension of 107 MRC-5 cells and a set of density marker beads (Cospherix, CA, USA) were 512 

centrifuged in parallel in a 5-layer CS5/Percoll (GE Healthcare) gradient. This gradient was 513 

established by overlaying CS5/Percoll solutions, in two 50 mL tubes, at a decreasing concentration of 514 

Percoll (50, 40, 30, 20 and 10%); after overlaying the cell or marker bead CS5 suspension, the two 515 

tubes were centrifuged at 4ºC for 30 min without acceleration or brake. 516 

Supplementary Figure 2 – Processor with the docked consumable (left) and the consumable only 517 

(right) for the commercial version of the CPrep device. The frozen cellular therapy is delivered from a 518 

centralized manufacturing facility to the hospital. When a patient is ready the frozen vial is placed 519 

into the CPREP consumable (yellow area), which is already docked to the processor. Here it is 520 

thawed before being pumped into the novel filter device where the DMSO is washed out. After the 521 

washing step the cells are drained into a syringe ready for administration. This entire fluidic circuit is 522 

an integral part of the consumable. 523 

Supplementary Video S1A and S1B – Loading using the novel filtration device. Video of the 524 

loading process for CS5 with Alizarin Red (Supplementary Video 1A) and 107 MRC-5 cells 525 

(Supplementary Video 1B). 526 

Supplementary Video S2A and S2B – Washing using the novel filtration device. Video of the 527 

washing process for PBS with Alizarin Red (Supplementary Video 2A, the dye has been dissolved in 528 

PBS to visualize the jet flow from the bottom inlet to the membrane) and 10
7
 MRC-5 cells 529 

(Supplementary Video 2B). 530 

Supplementary Video S3A and S3B – Backflush using the novel filtration device. Video of the 531 

backflush process for CS5 with Alizarin Red (Supplementary Video 3A) and 10
7
 MRC-5 cells 532 

(Supplementary Video 3B). 533 

Supplementary Video S4 – Volume reduction using the novel filtration device. Video of the volume 534 

reduction process for CS5 containing 10
7
 MRC-5 cells. 535 

 536 

Page 21 of 30

http://mc.manuscriptcentral.com/term

Journal of Tissue Engineering and Regenerative Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Fixed inputs and parameters for the operation of the filtration device.  
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Viable cell recovery, volume reduction and cell suspension viability after the filtration operation, under 
2mL/min bottom flow for 24 minutes, without lateral flow, for the injection molded version of the filtration 

device.  
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Viable cell recovery, volume reduction and cell suspension viability using the M3 geometry, under 2 mL/min 
bottom flow for 24 min, without lateral flow.  
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Filtration device design and fluid flow. A)- CAD drawing of the filtration device housing, divided in a top and 
bottom part (A, top); when the device is assembled (A, bottom) the filter is located between the two parts 
and the cell suspension is introduced into the bottom, where it is washed, concentrated and loaded into a 

syringe (B, Supplementary videos). Panel C) depicts the fluid flow in the device: for visualization purposes, a 
red dyed PBS solution was used to wash 1 mL of a (transparent) cell-free CryoStor5 solution (the full video 

is available in Supplementary Video S2A). This frame corresponds to t=1s in the wash process.  
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DMSO removal is enhanced by backflush frequency. The filter device was operated for 10 min in the wash 
mode with a 2 mL/min bottom flow rate and a 5 mL/min cross flow rate; after this wash step and before the 
concentration step a backflush was performed to dislodge cells from the filter membrane (see methods). The 

concentration of DMSO in the collected filtrate fractions increases after backflush (A). The backflush step 
was repeated 3 times throughout the wash period (3xbackflush) and compared to a single backflush after 
the wash step (1xbackflush) (B) for the amount of DMSO left in the cell suspension (lower chamber, which 
contains the retentate) (C) and the pressure difference generated in the lower chamber (D). ***, p<0.001.  
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Lateral flow wash alone shows a limited DMSO reduction. The filter device was operated for 10 minutes in 

the wash mode with a 2 mL/min bottom flow rate without cross flow (20 mL, n=3), with a 5 mL/min lateral 

flow rate without bottom flow (Lateral 5 mL/min, n=3) and with a 2 mL/min bottom flow rate and a 5 

mL/min cross flow rate (2/5 flow, n=6). ***, p<0.001 (Tukey’s multicomparison test).  
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Synergistic effect of the lateral and bottom flows. The presence of lateral flow during cell washing yields a 
DMSO reduction profile described by a single exponential function, as predicted by equation 1 (A, closed 

squares, n≥3 for all data points), whereas in the absence of the lateral flow, the bottom flow wash does not 

fit the equation 1 model (A, closed circles, n≥3 for all data points). The typical pressure profiles for these 2 
wash modes show that the presence of cross flow also leads to pressure build-up in the lower chamber, 

unlike the bottom flow only operation mode (B). To mimic the final thermoplastic product the bottom flow 
chamber geometry was injection molded (C, purple) to fit a PMMA housing (C, gray).  
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– Redesigning the filtration device for improved DMSO removal. The original filtration device was redesigned 
by changing the geometry of the bottom chamber which holds the cell suspension, which led to changes in 
the distance between the bottom inlet and the filter membrane, and filtration area (A). A CFD analysis on 

the M2 geometry revealed “dead zones” where the DMSO was being removed with less efficiency (B). The 3 
different geometries were evaluated for their DMSO reduction capability (C, n≥3 for all data points), 

operated with (open symbols) and without (closed symbols) lateral flow, except for M3, where lateral flow 
lead to clogging (data not shown); the final pressure in the lower chamber, after 24 min, also revealed 
differences between geometries and wash modes (D, n=3 for all data points). The sine of the angle α, 

formed between the horizontal plane and the lower chamber slope that connects the bottom and lateral 
inlets (E), is different between devices; when the number of diavolumes is multiplied by the sin(α), specific 
for each device, the curves that obey equation1 in C follow a single exponential decay empirical model, as 

described by equation 2 (F). The M3 geometry was assessed for its ability to reduce albumin-FITC by 
washing a cell suspension for 24 minutes at 2mL/min bottom flow (G); furthermore, the cellular proliferation 
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after filtration processing, using the M3 geometry (n=4), was compared with post-centrifugation processing 
(n=5) and fresh cell culture processing (i.e. cell counts during passaging, n=5) by calculating the specific 

growth rate µ (day-1).  
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hMSC post filtration recovery, proliferation and characterization. hMSCs were processed using the M3 
geometry filtration device. The post filtration characterization after 3 cell runs (generated from 2 donors) 
was performed according to the ISCT criteria: cell surface markers (Figure 6 A, individual flow cytometry 
histograms, and B, aggregate results from the 3 cell runs), adherence to plastic (Figure 6E, scale bar=400 
µm) and the capability for chondrogenic, osteogenic and adipogenic differentiation (Figure 6G, H, scale 
bar=100 µm, and I, scale bar=50 µm, respectively). The viable cell recovery, DMSO removal and hMSC 

growth rates after filtration are displayed in Figure 6 C, D and F, respectively).  
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