4 research outputs found

    Global database on large magnitude explosive volcanic eruptions (LaMEVE)

    Get PDF
    © 2012 Crosweller et al. To facilitate the assessment of hazards and risk from volcanoes, we have created a comprehensive global database of Quaternary Large Magnitude Explosive Volcanic Eruptions (LaMEVE). This forms part of the larger Volcanic Global Risk Identification and Analysis Project (VOGRIPA), and also forms part of the Global Volcano Model (GVM) initiative (www.globalvolcanomodel.org). A flexible search tool allows users to select data on a global, regional or local scale; the selected data can be downloaded into a spreadsheet. The database is publically available online at www.bgs.ac. uk/vogripa and currently contains information on nearly 3,000 volcanoes and over 1,800 Quaternary eruption records. Not all volcanoes currently have eruptions associated with them but have been included to allow for easy expansion of the database as more data are found. Data fields include: Magnitude, Volcanic Explosivity Index (VEI), deposit volumes, eruption dates, and rock type. The scientific community is invited to contribute new data and also alert the database manager to potentially incorrect data. Whilst the database currently focuses only on large magnitude eruptions, it will be expanded to include data specifically relating to the principal volcanic hazards (e.g. pyroclastic flows, tephra fall, lahars, debris avalanches, ballistics), as well as vulnerability (e.g. population figures, building type) to facilitate risk assessments of future eruptions

    Drift Pebble Lithology of the Tomahawk Road Area, Lake County, Minnesota: Can It Be Used to Infer Local Bedrock?

    No full text
    This MDNR project was aimed at testing the usefulness of using glacial drift pebble composition to determine the type of underlying bedrock in drift-covered areas. Pebbles > 1/4" in 81 surface drift samples from west-central Lake County were separated and examined, and each was assigned to one of 19 rock types (12 Keweenawan, 3 Animikie, 3 Archean, 1 "unknown". The 50 (or more) largest pebbles were counted in each sample; this number was found to give reproducible results. Each sample was then assigned to one of seven Drift Pebble Assemblages, which were plotted on a digitized map. No significant differences were found between samples classed as subglacial (basal) and "reworked" (supraglacial, meltout) till. Meanwhile rock outcrops and the six DDH cores from the area were examined both megascopically and in thin section, and a revised geologic map was constructed. Four (and possibly 5) bedrock units are discernible: anorthosite in the eastern 2/5, olivine gabbro and troctolite of the Bald Eagle Intrusion in the north-central part, and one or two troctolite units (including the South Kawishiwi troctolite) in the western half of the area. Some large gaps in outcrop control, however, make some contacts poorly constrained. In general, the most abundant pebble type in these samples corresponds to the underlying bedrock type, suggesting that this technique can be useful for "remotely sensing" bedrock types in covered areas. However, in the eastern 1/4 of the area the drift is dominated by lithologies (Archean, Animikie, Keweenawan lavas, granophyre) that have been transported for long distances (several lO's of km) from the E, ENE, or ESE. This must have been carried by the Superior Lobe and is clearly not basal till (directly overlying bedrock). Elsewhere in the study area, ice transport has produced some gradations or transition zones in the drift pebble assemblages, compared to the bedrock contacts. Also, since glacial transport in the Rainy Lobe (dominant here) was primarily roughly parallel to the main bedrock contact (anorthosite vs troctolite), the pebble assemblage at any sample site may have come largely from a few km up-ice. Thus the technique will be most successful when the drift is relatively thin and its stratigraphy is known well enough to exclude the existence of an upper drift sheet that is not in contact with local bedrock, and where rock boundaries are at large angles to ice transport direction.Minnesota Department of Natural Resources, Division of Mineral

    Lo público en el derecho internacional a la luz de “El concepto de lo político” de Schmitt

    No full text
    corecore