393 research outputs found

    Role of heating and current-induced forces in the stability of atomic wires

    Full text link
    We investigate the role of local heating and forces on ions in the stability of current-carrying aluminum wires. We find that heating increases with wire length due to a red shift of the frequency spectrum. Nevertheless, the local temperature of the wire is relatively low for a wide range of biases provided good thermal contact exists between the wire and the bulk electrodes. On the contrary, current-induced forces increase substantially as a function of bias and reach bond-breaking values at about 1 V. These results suggest that local heating promotes low-bias instabilities if dissipation into the bulk electrodes is not efficient, while current-induced forces are mainly responsible for the wire break-up at large biases. We compare these results to experimental observations.Comment: 4 pages, 4 figure

    Topological jamming of spontaneously knotted polyelectrolyte chains driven through a nanopore

    Full text link
    The advent of solid state nanodevices allows for interrogating the physico-chemical properties of a polyelectrolyte chain by electrophoretically driving it through a nanopore. Salient dynamical aspects of the translocation process have been recently characterized by theoretical and computational studies of model polymer chains free from self-entanglement. However, sufficiently long equilibrated chains are necessarily knotted. The impact of such topological "defects" on the translocation process is largely unexplored, and is addressed in this study. By using Brownian dynamics simulations on a coarse-grained polyelectrolyte model we show that knots, despite being trapped at the pore entrance, do not "per se" cause the translocation process to jam. Rather, knots introduce an effective friction that increases with the applied force, and practically halts the translocation above a threshold force. The predicted dynamical crossover, which is experimentally verifiable, is of relevance in applicative contexts, such as DNA nanopore sequencing.Comment: 6 pages; 7 figure

    Heterovalent interlayers and interface states: an ab initio study of GaAs/Si/GaAs (110) and (100) heterostructures

    Full text link
    We have investigated ab initio the existence of localized states and resonances in abrupt GaAs/Si/GaAs (110)- and (100)-oriented heterostructures incorporating 1 or 2 monolayers (MLs) of Si, as well as in the fully developed Si/GaAs (110) heterojunction. In (100)-oriented structures, we find both valence- and conduction-band related near-band edge states localized at the Si/GaAs interface. In the (110) systems, instead, interface states occur deeper in the valence band; the highest valence-related resonances being about 1 eV below the GaAs valence-band maximum. Using their characteristic bonding properties and atomic character, we are able to follow the evolution of the localized states and resonances from the fully developed Si/GaAs binary junction to the ternary GaAs/Si/GaAs (110) systems incorporating 2 or 1 ML of Si. This approach also allows us to show the link between the interface states of the (110) and (100) systems. Finally, the conditions for the existence of localized states at the Si/GaAs (110) interface are discussed based on a Koster-Slater model developed for the interface-state problem.Comment: REVTeX 4, 14 pages, 15 EPS figure

    Critical branching processes in digital memcomputing machines

    Full text link
    Memcomputing is a novel computing paradigm that employs time non-locality (memory) to solve combinatorial optimization problems. It can be realized in practice by means of non-linear dynamical systems whose point attractors represent the solutions of the original problem. It has been previously shown that during the solution search digital memcomputing machines go through a transient phase of avalanches (instantons) that promote dynamical long-range order. By employing mean-field arguments we predict that the distribution of the avalanche sizes follows a Borel distribution typical of critical branching processes with exponent τ=3/2\tau= 3/2. We corroborate this analysis by solving various random 3-SAT instances of the Boolean satisfiability problem. The numerical results indicate a power-law distribution with exponent τ=1.51±0.02\tau = 1.51 \pm 0.02, in very good agreement with the mean-field analysis. This indicates that memcomputing machines self-tune to a critical state in which avalanches are characterized by a branching process, and that this state persists across the majority of their evolution.Comment: 5 pages, 3 figure

    Effect of electron-phonon scattering on shot noise in nanoscale junctions

    Full text link
    We investigate the effect of electron-phonon inelastic scattering on shot noise in nanoscale junctions in the regime of quasi-ballistic transport. We predict that when the local temperature of the junction is larger than its lowest vibrational mode energy eVceV_c, the inelastic contribution to shot noise (conductance) increases (decreases) with bias as VV (V\sqrt{V}). The corresponding Fano factor thus increases as V\sqrt{V}. We also show that the inelastic contribution to the Fano factor saturates with increasing thermal current exchanged between the junction and the bulk electrodes to a value which, for V>>VcV>>V_c, is independent of bias. A measurement of shot noise may thus provide information about the local temperature and heat dissipation in nanoscale conductors.Comment: 4 pages, 2 figure

    Single-particle and Interaction Effects on the Cohesion and Transport and Magnetic Properties of Metal Nanowires at Finite Voltages

    Full text link
    The single-particle and interaction effects on the cohesion, electronic transport, and some magnetic properties of metallic nanocylinders have been studied at finite voltages by using a generalized mean-field electron model. The electron-electron interactions are treated in the self-consistent Hartree approximation. Our results show the single-particle effect is dominant in the cohesive force, while the nonzero magnetoconductance and magnetotension coefficients are attributed to the interaction effect. Both single-particle and interaction effects are important to the differential conductance and magnetic susceptibility.Comment: 5 pages, 6 figure

    Electronic structure of the Au/benzene-1,4-dithiol/Au transport interface: Effects of chemical bonding

    Full text link
    We present results of electronic structure calculations for well-relaxed Au/benzene-1,4-dithiol/Au molecular contacts, based on density functional theory and the generalized gradient approximation. Electronic states in the vicinity of the Fermi energy are mainly of Au 5d and S 3p symmetry, whereas contributions of C 2p states are very small. Hybridization between C 2p orbitals within the benzene substructure is strongly suppressed due to S-C bonding. In agreement with experimental findings, this corresponds to a significantly reduced conductance of the molecular contact.Comment: 7 pages, 5 figures, accepted by Chemical Physics Letter

    Reconstructing Fourier's law from disorder in quantum wires

    Full text link
    The theory of open quantum systems is used to study the local temperature and heat currents in metallic nanowires connected to leads at different temperatures. We show that for ballistic wires the local temperature is almost uniform along the wire and Fourier's law is invalid. By gradually increasing disorder, a uniform temperature gradient ensues inside the wire and the thermal current linearly relates to this local temperature gradient, in agreement with Fourier's law. Finally, we demonstrate that while disorder is responsible for the onset of Fourier's law, the non-equilibrium energy distribution function is determined solely by the heat baths
    • …
    corecore