83 research outputs found

    Valorisation of hydrothermal liquefaction wastewater in agriculture: effects on tobacco plants and rhizosphere microbiota

    Get PDF
    Industrial wastewater obtained from hydrothermal liquefaction (HTL-WW) of food wastes for biofuels production could represent a source of crop nutrients since it is characterized by a high amount of organic and inorganic compounds. In the present work, the potential use of HTL-WW as irrigation water for industrial crops was investigated. The composition of the HTL-WW was rich in nitrogen, phosphorus, and potassium with high level of organic carbon. A pot experiment with Nicotiana tabacum L. plants was conducted using diluted wastewater to reduce the concentration of some chemical elements below the official accepted threshold values. Plants were grown in the greenhouse under controlled conditions for 21 days and irrigated with diluted HTL-WW every 24 hours. Soils and plants were sampled every seven days to evaluate, over time, the effect of wastewater irrigation both on soil microbial populations, through high-throughput sequencing, and plant growth parameters, through the measurement of different biometric indices. Metagenomic results highlighted that, in the HTL-WW treated rhizosphere, the microbial populations shifted via their mechanisms of adaptation to the new environmental conditions, establishing a new balance among bacterial and fungal communities. Identification of microbial taxa occurring in the rhizosphere of tobacco plants during the experiment highlighted that the HTL-WW application improved the growth of Micrococcaceae, Nocardiaceae and Nectriaceae, which included key species for denitrification, organic compounds degradation and plant growth promotion. As a result, irrigation with HTL-WW improved the overall performance of tobacco plants which showed higher leaf greenness and increased number of flowers compared to irrigated control plants. Overall, these results demonstrate the potential feasibility of using of HTL-WW in irrigated agriculture

    Microbial characterization of sourdough for sweet baked products in the Campania region (southern Italy) by a polyphasic approach

    Get PDF
    The microflora of nine sourdoughs used for sweet bakery products underwent preliminary microbiological characterization using lactic acid bacteria (LAB) and yeast enumeration. Five sourdough samples were submitted for microbial identification by culture-dependent techniques employing 16S and 26S rRNA genes sequencing, as well as a culture-independent technique using PCR-DGGE analysis. The LAB species isolated belonged principally to facultative heterofermentative Lactobacillus spp., Leuconostoc spp., and Lactococcus spp. Yeast strains were identified as Saccharomyces cerevisiae, with one exception represented by a strain belonging to Metschnikowia pulcherrima. PCR-DGGE analysis allowed the identification of Streptococcus thermophilus, Lactobacillus sakei, Weissella groceries and Lactobacillus sanfranciscensis among lactic acid bacteria and Saccharomyces cerevisiae and Metschnikowia pulcherrima among yeasts. This polyphasic approach highlighted different levels of biodiversity, from two to eight different typical LAB species, always associated to Saccharomyces cerevisiae, that could be selected to be specifically used in naturally fermented brioche and cornetto preparation

    Anaerobic Process for Bioenergy Recovery From Dairy Waste: Meta-Analysis and Enumeration of Microbial Community Related to Intermediates Production

    Get PDF
    Dairy wastes are widely studied for the hydrogen and methane production, otherwise the changes in microbial communities related to intermediate valuable products was not deeply investigated. Culture independent techniques are useful tools for exploring microbial communities in engineered system having new insights into their structure and function as well as potential industrial application. The deep knowledge of the microbiota involved in the anaerobic process of specific waste and by-products represents an essential step to better understand the entire process and the relation of each microbial population with biochemical intermediates and final products. Therefore, this study investigated the microbial communities involved in the laboratory-scale anaerobic digestion of a mixture of mozzarella cheese whey and buttermilk amended with 5% w/v of industrial animal manure pellets. Culture-independent methods by employing high-throughput sequencing and microbial enumerations highlighted that lactic acid bacteria, such as Lactobacillaceae and Streptococcaceae dominated the beginning of the process until about day 14 when a relevant increase in hydrogen production (more than 10 ml H2 gVS-1 from days 13 to 14) was observed. Furthermore, during incubation a gradual decrease of lactic acid bacteria was detected with a simultaneous increase of Clostridia, such as Clostridiaceae and Tissierellaceae families. Moreover, archaeal populations in the biosystem were strongly related to inoculum since the non-inoculated samples of the dairy waste mixture had a relative abundance of archaea less than 0.1%; whereas, in the inoculated samples of the same mixture several archaeal genera were identified. Among methanogenic archaea, Methanoculleus was the dominant genus during all the process especially when the methane production occurred, and its relative abundance increased up to 99% at the end of the incubation time highlighting that methane was formed from dairy wastes primarily by the hydrogenotrophic pathway in the reactors

    Bioprospecting of exopolysaccharide-producing bacteria from different natural ecosystems for biopolymer synthesis from vinasse

    Get PDF
    Abstract Background Exopolysaccharides (EPSs) belong to a family of organic thickeners or alternative hydrocolloids of microbial origin. Because the chemical structure offers beneficial bioactive functions, biocompatibility and biodegradability, EPSs are used in the chemical, food, pharmaceutical, cosmetics, and packaging industries as well as in agriculture and medicine. In this study, new bacterial strains were selected on the basis of their ability to synthesize EPS from substrate containing vinasse as a nutrient source to identify the best candidate for bio-based polymer production. Results Among the 99 newly identified bacterial strains isolated from different natural ecosystem, the strain Azotobacter chroococcum 76A was selected as the best biopolymer producer since it synthesized the highest concentration of EPS in all media containing vinasse. The maximum EPS concentration (44.6 ± 0.63 mg/50 mL) was observed at 24 h, corresponding to its sub-stationary growth phase (7 × 108 ± 0.29 CFU/mL). Chemical characterization of the EPS produced showed that carbohydrates representing the principal component, followed by uronic acids and proteins. Interestingly, comparing the IR spectrum of the EPS with alginate by FTIR-ATR analysis revealed an overlap of a peak identified as guluronic acid, a component of alginate. Conclusions The potential biotechnological capacity of A. chroococcum 76A to synthetize biopolymer from vinasse, inexpensive starting materials, represents a possible alternative to expensive disposal of agri-food waste through its transformation into high value-added products

    Impact of Innovative Agricultural Practices of Carbon Sequestration on Soil Microbial Community.

    Get PDF
    This chapter deals with the impact on soil microbiology of innovative management techniques for enhancing carbon sequestration. With in the MESCOSAGR project, the effect of different field treatments was investigated at three experimental sites differing in pedo-climatic characteristics. Several microbiological parameters were evaluated to describe the composition of soil microbial communities involved in the carbon cycle, as well as to assess microbial biomass and activity. Results indicated that both compost and catalyst amendments to field soils under maize or wheat affected microbial dynamics and activities, though with out being harmful to microbial communities

    Comparative assessment of autochthonous bacterial and fungal communities and microbial biomarkers of polluted agricultural soils of the Terra dei Fuochi

    Get PDF
    Organic and inorganic xenobiotic compounds can affect the potential ecological function of the soil, altering its biodiversity. Therefore, the response of microbial communities to environmental pollution is a critical issue in soil ecology. Here, a high-throughput sequencing approach was used to investigate the indigenous bacterial and fungal community structure as well as the impact of pollutants on their diversity and richness in contaminated and noncontaminated soils of a National Interest Priority Site of Campania Region (Italy) called “Terra dei Fuochi”. The microbial populations shifted in the polluted soils via their mechanism of adaptation to contamination, establishing a new balance among prokaryotic and eukaryotic populations. Statistical analyses showed that the indigenous microbial communities were most strongly affected by contamination rather than by site of origin. Overabundant taxa and Actinobacteria were identified as sensitive biomarkers for assessing soil pollution and could provide general information on the health of the environment. This study has important implications for microbial ecology in contaminated environments, increasing our knowledge of the capacity of natural ecosystems to develop microbiota adapted to polluted soil in sites with high agricultural potential and providing a possible approach for modeling pollution indicators for bioremediation purposes

    Root inoculation with Azotobacter chroococcum 76A enhances tomato plants adaptation to salt stress under low N conditions

    Get PDF
    Background: The emerging roles of rhizobacteria in improving plant nutrition and stress protection have great potential for sustainable use in saline soils. We evaluated the function of the salt-tolerant strain Azotobacter chroococcum 76A as stress protectant in an important horticultural crop, tomato. Specifically we hypothesized that treatment of tomato plants with A. chroococcum 76A could improve plant performance under salinity stress and sub-optimal nutrient regimen. Results: Inoculation of Micro Tom tomato plants with A. chroococcum 76A increased numerous growth parameters and also conferred protective effects under both moderate (50 mM NaCl) and severe (100 mM NaCl) salt stresses. These benefits were mostly observed under reduced nutrient regimen and were less appreciable in optimal nitrogen conditions. Therefore, the efficiency of A. chroococcum 76A was found to be dependent on the nutrient status of the rhizosphere. The expression profiles of LEA genes indicated that A. chroococcum 76A treated plants were more responsive to stress stimuli when compared to untreated controls. However, transcript levels of key nitrogen assimilation genes revealed that the optimal nitrogen regimen, in combination with the strain A. chroococcum 76A, may have saturated plant’s ability to assimilate nitrogen. Conclusions: Roots inoculation with A. chroococcum 76A tomato promoted tomato plant growth, stress tolerance and nutrient assimilation efficiency under moderate and severe salinity. Inoculation with beneficial bacteria such as A. chroococcum 76A may be an ideal solution for low-input systems, where environmental constraints and limited chemical fertilization may affect the potential yield

    Biodegradable mulching vs traditional polyethylene film for sustainable solarization: Chemical properties and microbial community response to soil management

    Get PDF
    Abstract Soil solarization is usually performed with polyethylene plastic films, which are often disposed of by taking them to landfills, burying them in soil, burning them or occasionally recycling them, and these approaches have a great impact on the environment. Therefore, the use of biodegradable films seems to be an interesting eco-sustainable alternative to traditional films. The effect of soil solarization carried out by using biodegradable mulch or traditional polyethylene plastic film was determined under greenhouse conditions. The response of the soil was assessed by chemical determinations and microbiological culture-dependent and culture-independent approaches to evaluate the microbial biodiversity, biological status and quality of the soil. The biodegradable film avoided a high ammonia concentration in the soil, thanks to both lower soil water content and slightly lower temperature than polyethylene film, and these conditions probably have been optimal for growth of nitrifying bacteria, which were more efficient in BIO, as highlighted not only by lower ammonia value but also by higher nitrate value. Both films did not affect organic matter and total nitrogen content. Moreover, the modifications of the environmental and ecological conditions associated with the different film covers applied to the soils affected prokaryotic and eukaryotic populations, leading to the establishment of a new dominant microbial community. Interestingly, microbiological analyses highlighted a different behavior modulated with the two films indicating different times of recovery post stress. Overall, the results highlighted the potential of biodegradable film that appears to be a suitable replacement for traditional polyethylene plastic film for soil solarization, with great environmental benefits

    Compost and microbial biostimulant applications improve plant growth and soil biological fertility of a grass-based phytostabilization system

    Get PDF
    In this work, a grass-based phytoremediation system integrated with an organic amendment and biostimulants was evaluated for remediating contaminated sites. Plant growth and biological fertility were monitored to assess the efficacy of a vegetative cap used as a safety measure to reduce sanitary and environmental risks of industrially contaminated soils and soil-washing sludges. Both matrices were potentially contaminated with Pb and Zn with an ecological risk index from low to moderate. According to potentially toxic elements (PTEs) bioaccessibility tests, the exposure to the released fine particulate matter may cause serious risks to human beings, in particular to children. The grass mixture was well adapted to both the substrates and a low PTEs mobility was detected, thus, reducing the leaching risk to ground water sources. Compost addition augmented significantly nitrogenase reductase (nifH) and ammonia monooxygenase (amoA) gene expression abundance in both substrates. Furthermore, a positive interaction between compost fertilization and a Trichoderma-based biostimulant inoculation was recorded in sludges resulting in a significant stimulation of nitrogen-fixing and ammonia-oxidizing bacteria. The application of compost and biostimulant increased soil fertility and plant growth. Furthermore, there was a slight reduction in PTE bioaccessibility, thus, improving the efficiency of the phytostabilization, limiting the resuspension and dispersion of the health-risk soil particulate

    Inoculation with a microbial consortium increases soil microbial diversity and improves agronomic traits of tomato under water and nitrogen deficiency

    Get PDF
    Microbial-based biostimulants, functioning as biotic and abiotic stress protectants and growth enhancers, are becoming increasingly important in agriculture also in the context of climate change. The search for new products that can help reduce chemical inputs under a variety of field conditions is the new challenge. In this study, we tested whether the combination of two microbial growth enhancers with complementary modes of action, Azotobacter chroococcum 76A and Trichoderma afroharzianum T22, could facilitate tomato adaptation to a 30% reduction of optimal water and nitrogen requirements. The microbial inoculum increased tomato yield (+48.5%) under optimal water and nutrient conditions. In addition, the microbial application improved leaf water potential under stress conditions (+9.5%), decreased the overall leaf temperature (-4.6%), and increased shoot fresh weight (+15%), indicating that this consortium could act as a positive regulator of plant water relations under limited water and nitrogen availability. A significant increase in microbial populations in the rhizosphere with applications of A. chroococcum 76A and T. afroharzianum T22 under stress conditions, suggested that these inoculants could enhance soil microbial abundance, including the abundance of native beneficial microorganisms. Sampling time, limited water and nitrogen regimes and microbial inoculations all affected bacterial and fungal populations in the rhizospheric soil. Overall, these results indicated that the selected microbial consortium could function as plant growth enhancer and stress protectant, possibly by triggering adaptation mechanisms via functional changes in the soil microbial diversity and relative abundance
    • …
    corecore