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Abstract This chapter deals with the impact on soil microbiology of innovative

management techniques for enhancing carbon sequestration.Within theMESCOSAGR

project, the effect of different field treatments was investigated at three experimental

sites differing in pedo-climatic characteristics. Several microbiological parameters

were evaluated to describe the composition of soil microbial communities involved

in the carbon cycle, as well as to assess microbial biomass and activity. Results

indicated that both compost and catalyst amendments to field soils under maize or

wheat affected microbial dynamics and activities, though without being harmful to

microbial communities.

6.1 Microorganisms in Soil

A huge number of microorganisms reside in soil and exert a variety of functions

which contribute to ecosystem-level processes and maintenance of primary produc-

tivity in terrestrial ecosystems. Growth and metabolism of soil microbes can alter the

solubility of soil mineral components and modify soil structure. Moreover, microbes

are able to degrade organic compounds and release nutrients, thus regulating nutrients

cycling and availability to plants. Microbial activity is responsible for most of soil

respiration, thus including oxygen consumption and CO2 emission, and for immo-

bilization of nutrients in soil microbial biomass. Soil microbes contribute to processes
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of carbon sequestration in the soil humic fraction since they transform dead organic

matter in such a recalcitrant pool. Furthermore, microbial activity is responsible for

other essential biological processes, among which is nitrogen fixation. In the absence

of soil microbial life, all biochemical transformation cease and the ecosystem

sustainability is endangered (Wani and Lee 1995).

Although microbial C in natural soil does not exceed 1–2% of the total soil C

(Paul and Clark 1989), it is constituted by a huge variety of organisms whose

taxonomy and diversity are poorly known in comparison to aboveground organisms

(Barot et al. 2007). Soil microbial communities are extraordinary complex and have

been estimated to contain more than 4,000 different genomic equivalent in a single

gram of soil (Torsvik et al. 1990). However, microbial species in soil are poorly

abundant, most likely because conditions for their survival and growth are limited

to a few sites where specific environmental factors, physical–chemical charac-

teristics, and nutrient availability occur. Soil is a very heterogeneous environment

encompassing solid, gaseous, and liquid phases. Microbial processes take place at

the scale of soil aggregate, which is essentially a porous structure that varies both

spatially and temporally. Because soil organic matter located within soil aggregates

is physically protected from biodegradation, aggregates enhance carbon sequestra-

tion and soil structural stability (Six et al. 2000). Microbial dynamics is influenced

by soil structure and the pore-size distribution within soil aggregates. Bacteria are

restricted to grow and feed on the exposed surfaces of organic matter and/or

inorganic particles. Fungi penetrate large pieces of organic matter and can thus

extend their hyphae for centimeters and even meters in soil. The location of bacteria

and fungi influences their activity as well as their survival to predation. The larger

size of fungi may make them more vulnerable to predation, whilst small pores

provide refuge for bacteria against predators (Six et al. 2006).

Plants are responsible for a large input of organic carbon into soil, thus becoming

the main determinant of microbial life in soil through the complex food web of

debris. It has been found that the type of aboveground plant community influences

the composition of belowground soil microbial community in natural ecosystems

(Reynolds et al. 1997; Côté et al. 2000; Smolander and Kitunen 2002; Rutigliano

et al. 2004), as well as in semi-natural grasslands (Singh et al. 2009) and in agro-

ecosystems (Marschner et al. 2001; Hedlund 2002). Moreover, arbuscular mycor-

rhizal fungi require a plant host to survive.

Consequently, plants influence the spatial distribution of bacteria and fungi in

soil (Kirk et al. 2004). The site of greatest soil activity is the root–soil interface, or

rhizosphere. Roots affect soil structure, aeration, and biological activity and deeply

impact soil microbial communities in their immediate vicinity, greatly increasing

population densities of bacteria and fungi (Buyer et al. 2002; Marschner et al.

2002). As plants may allocate up to 40% of the assimilated carbon belowground,

roots are the major source of organic matter into the surrounding soil through both

root debris and exudates. Exudates are made up of sugars (50–70%), carboxylic

acids (20–30%), and amino acids (10–20%), i.e., carbon-rich substrates that are

able to regulate decomposition of recalcitrant soil organic carbon by controlling the

activity and relative abundance of fungi and bacteria (Cheng et al. 2003; de Graaf

et al. 2010).
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Among soil organisms, actinomycetes, fungi (Fig. 6.1), and bacteria are the most

abundant and most metabolically active. Bacteria and fungi generally comprise

>90% of the total soil microbial biomass and are responsible for most of soil

organic matter decomposition (Six et al. 2006). Fungi incorporate more soil C in

their biomass than bacteria, and fungal cell walls are more recalcitrant than

bacterial cell walls. Therefore, carbon sequestration may be larger in soils

dominated by fungal communities than in those whose communities are dominated

by bacteria (Six et al. 2006). Moreover, actinomycetes, fungi, and bacteria include

organisms (such as aerobic and anaerobic cellulolytic bacteria), which are able to

degrade cellulose and lignin (McCarthy and Williams 1992; Wellington and Toth

1994; Berg and McClaugherty 2008). In fact, degradation of plant biopolymers is

the fundamental step in the carbon cycle and this process is important in soil

systems. Since plants are the most relevant carbon providers in soil and cellulose

and lignin are the most abundant constituents of plant tissues, they consequently

represent the largest source of carbon in soil. Microorganisms transform plant

polymers into simpler compounds, which are then made available to other micro-

bial populations, and/or are stabilized in humic substances. The mineralization

process during metabolic consumption of polymer by-products ultimately produces

carbon dioxide that is emitted to the atmosphere. Moreover, actinomycetes regulate

the microbial equilibrium in soil through production of antibiotics and probiotics

that stimulate microflora and plant growth.

Fungi play a central role in many soil microbiological processes thus influencing

the structure and functioning of plant communities and soil ecosystems. Fungi are

immensely diversified, both structurally and functionally, and adopt different

trophic strategies, since they occur as saprotrophs, symbionts, and pathogens.

Individual fungi can often simultaneously colonize different substrates, such as

living or dead plant tissues, woody debris, soil animals, and mineral substrates, thus

Fig. 6.1 Living fungal

hyphae observed by

fluorescence microscopy after

treatment with the viability

stain fluorescein diacetate

(FDA)
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allowing the transfer of substances. Filamentous fungi are responsible for decom-

position of organic matter (e.g., lignin degradation) and nutrient cycling (Parkinson

1994; Van Elsas et al. 2007) and their activity is critical in regulating the availabil-

ity of nutrients for plant growth. Moreover, fungi are food for nematodes, mites, and

other larger soil organisms, which are also predators or parasites of other soil

organisms.

6.2 Impact of Agricultural Management on Soil Microbial

Communities

Agricultural management produces a disturbance of both abiotic and biotic

components of soils. The most negative impact is the loss of soil organic matter

(SOM) (Balesdent et al. 1999), with consequent increase in soil erosion and decrease

in soil structure stability (Bronick and Lai 2005) and fertility. In agro-ecosystems,

soils degradation is the outcome of unsustainable techniques aimed to increase

production in the short term without paying attention to the conservation of soil

resources. Agricultural land management, such as cropping systems (Kuske et al.

2002) and tillage systems (Peixoto et al. 2006) may affect soil characteristics, includ-

ing physical, chemical, and biological properties and processes. It has been observed

that tillage reduces soil microbial populations (Ibekwe et al. 2002) and different

enzymatic activities (Carpenter-Boggs et al. 2003). Tillage has a catastrophic effect

on fungi as it physically breaks the hyphae and severely damages the mycelium, thus

consequently hampering the stability of soil aggregates whose particles are transiently

bound together by fungal hyphae. Six et al. (2006) showed that no-tillage enhances

fungal biomass with a consequent quantitative and qualitative SOM improvement that

is attributed to the positive influence of fungi on aggregate stabilization.

Alternative agricultural techniques, such as minimum tillage, have been devel-

oped to improve soil quality by progressively recovering soil organic matter (Lu

et al. 2000). In long-term experiments on tillage comparison along two climatic

gradients, Frey et al. (1999) observed that in response to reduced tillage both fungal

biomass and fungal/bacterial biomass increased at all sites. Thus, less intensively

managed agro-ecosystems, such as those managed with no-tillage practices, more

closely resemble natural ecosystems, which are dominated by fungi (Bayley et al.

2002). On the other hand, intensive cultivation leads to progressive SOM depletion

with a consequent microbial biomass reduction, loss of microbial diversity and

reduction of microbial activities (Bastida et al. 2006). Buckley and Schmidt (2001)

performed a large-scale experiment with replicated plots under distinct manage-

ment regimes ranging from conventionally tilled annual cropping systems to

abandoned fields. The effects of tillage, fertilization, and plant community compo-

sition on the structure of microbial community were evaluated. They found that

microbial communities differed significantly between fields that had never been

cultivated and those with a long-term history of cultivation. However, microbial

community structure was very similar in plots that shared a long-term history of

148 V. Ventorino et al.



cultivation, despite differences in plant community composition, chemical inputs,

tillage, and productivity. They argued that microbial communities respond to soil

characteristics which require long time periods to recover from disturbance. Indeed,

the organic pools of carbon and nitrogen can be depleted by long-term agricultural

practices and may require decades or even centuries to recover pre-agricultural

levels. In a study dealing with soil quality as related to different land uses in

Southern Italy, Marzaioli et al. (2010) report that soil quality, evaluated by a set

of parameters including microbial indexes, was strongly and negatively affected by

permanent crop management. Moderate grazing activity, as well as crop manage-

ment comprising mulch cover on soil, had a lower negative impact. Moreover, these

authors found that the abandonment of cultivated lands, with consequent develop-

ment of shrublands, produced an improvement of soil quality, thus suggesting

a good recovery capacity.

Microbes are also affected by fertilization (Marschner et al. 2003), both directly

and indirectly. Zhong and Cai (2007) showed that the long-term application of P

and N indirectly affected microbial parameters in soil by increasing crop yields and

promoting SOM accumulation. Fertilizers used in agricultural production systems

include mineral (urea, ammonium nitrate, sulfates, and phosphates) and organic

(animal manures, biosolids, and composts) fertilizers. Composted materials vary

widely in their characteristics such as dry and organic matter content, pH, carbon

and nitrogen content, plant residues, and microbial community composition. Appli-

cation of compost to soil is used to improve soil fertility and structure since it

increases the carbon, nitrogen, and phosphorus content in soil (Hartz et al. 2000;

Filcheva and Tsadilas 2002; Adediran et al. 2003) and contributes to the stabiliza-

tion of soil aggregates (Bresson et al. 2001; Barzegar et al. 2002). Although

compost amendments differ in origin of material and application rates, organic

amendments to soil generally result in an increase of microbial proliferation in soil

(B€unemann et al. 2006). In fact, organic-matter-rich amendments are also used to

stimulate soil microflora in degraded and arid environments (Ouedraogo et al. 2001;

Ros et al. 2003). However, compost amendment can also cause negative effects by

altering the microbial biomass, size, function, and diversity, if contaminant residues

are present at toxic levels (Gomez 1998; Zheljazkov and Warman 2003). Neverthe-

less, soil microbial response is generally transient (Calbrix et al. 2007) and micro-

bial characteristics can return to their baseline within a few years (Speir et al. 2003;

Garcia Gil et al. 2004) depending on nature of organic amendments and level of

compost application (Albiach et al. 2000; Garcia-Gil et al. 2000).

6.3 Microbial Parameters as Indexes of Soil Quality

Because of the fundamental role in mediating soil processes and the responsiveness

to soil managements, microbial abundance, diversity, and activity are among the

most important soil quality parameters (Andrews and Carroll 2001; Karlen et al.

2001, 2003; Andrews et al. 2003; Anderson and Domsch 2010). In fact, the effect of
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agricultural management on microbial community is directly related to changes in

soil quality (Schloter et al. 2003), that encompass the size and diversity of specific

functional microbial groups (Helgason et al. 1998; Chang et al. 2001).

A great number of methods have been developed to determine the presence and

activities of microbial communities in soil. Some of them are internationally

standardized (Winding et al. 2005), such as measures of population size for either

a single organism type, a functional group, or a whole community. The effect of

agricultural managements on soil microorganisms can be measured with changes in

both community size (cell number) or microbial biomass, and biological activity,

such as soil respiration. However, although addition to soil of good quality compost

may increase global microbial biomass and enhance enzyme activity (Albiach et al.

2000; Perucci et al. 2000; Debosz et al. 2002), the specific responses of various

bacterial groups to changing environment in agricultural soils are poorly known

(Buckley and Schmidt 2001; Kiikkil€a et al. 2001; Chander and Joergensen 2002).

Moreover, several studies showed that, in order to assess fertilizers’ effects, micro-

bial enumeration methods by plate counts (Sarathchandra et al. 1993) and nematode

counts (Parfitt et al. 2005) are possibly more sensitive than measurements of

microbial biomass.

Fungal and microbial biomass is thought to be a sensitive indicator of soil quality

and an early predictor of changes in SOM dynamics. In fact, the rate of microbial

fraction turnover is relatively fast (2–6 years) as compared to more than 20 years of

SOM turnover (Jenkinson 1990). Thus, fungal and microbial biomass are SOM

living components (Jenkinson and Ladd 1981) representing an active soil carbon

that is more sensitive to soil management than total organic carbon (Frey et al. 1999;

Bayley et al. 2002; Weil and Magdoff 2004; Six et al. 2006). However, microbial

biomass C generally reflects the amount of total organic matter content. Both SOM

and microbial biomass decline under agricultural or land disturbance, indicating

exploitation of organic resources and impact of differing tillage systems, fertilizers,

and crop rotations (Luizao et al. 1992; Sparling 1997; Frey et al. 1999; Vineela et al.

2008). Soil respiration is the best indicator of the whole metabolic activity of soil

microorganisms, since it allows comparison of different soils and soil management

effects (Machulla 2003; Solaiman 2007). Soil respiration, as referred to SOM

content to give a coefficient of organic matter mineralization (CEM), may express

the potential capacity of soil to accumulate or mineralize carbon (Diaz-Raviñaa

et al. 1988).

6.4 Impact of Different Agricultural Practices on Soil Microbial

Communities: The Mescosagr Case Study

Within the National project MESCOSAGR, we investigated the impact on soil

microorganisms of two innovative technologies applied to sequester carbon in

agricultural soils. The hypothesis was that the structure and activity of microbial
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communities would be influenced by (1) addition of compost, a humified and

hydrophobic material that protects the easily degradable organic fraction, and

(2) in situ photo-oxidative polymerization of native SOM under the action of

a biomimetic catalyst (CAT) (iron–porphyrin). The effect of these two technologies

on soil microorganisms was compared with that exerted by traditional deep tillage

and minimum tillage. The latter is an agronomic practice commonly used to reduce

SOM depletion and limit CO2 emission from soil into the atmosphere (see Chap. 3).

Two types of approaches were pursued to estimate soil microbiological para-

meters (1) one aimed to characterize the composition of soil microbial communities

involved into carbon cycle, (2) another one based on a holistic view that considers

the microbial biomass as a whole, without distinguishing its individual components.

The first approach is based on the Surface Spread Plate Count Method and Pour

Plate Method, which use selective media to identify the major microbial groups

involved in the different steps of organic matter decomposition, i.e., total aerobic

heterotrophic bacteria, cellulolytic bacteria, fungi, and actinomycetes. This approach

allows determining the size and composition of microbial communities and has been

used to assess changes in the soil biota in response to land management, thereby

providing an indicator of soil biological status (Harris and Birch 1992). The second

approach is based on the determination of microbial community characteristics

which include abundance and activity (1) abundance of fungal cells is measured

by fluorescence microscopy; (2) soil microbial biomass is determined as microbial C

by the SIR (Substrate Induced Respiration) method; (3) microbial respiration per unit

of organic C becomes a coefficient of endogenous SOM mineralization. The combi-

nation of these two experimental approaches is expected to provide most information

regarding the effects of soil managements on microbial communities.

6.5 Soil Sampling and Microbiological Analyses

The study comprised three different sites (Napoli, Torino, and Piacenza) under

different soil and climate conditions. All microbial parameters were assessed in

both the bulk soil and the rhizo soil. Soil samples were collected from the experi-

mental plots under either maize or wheat (see Chaps. 3 and 7 for details on the field

trials) during three consecutive years (2006–2007–2008). Bulk-soil samples were

collected from the 0–15 cm soil layer after maize harvest (September) and before

wheat sowing (November). Rhizo-soil samples were collected during stem elonga-

tion (April–May for wheat rhizosphere, and July for maize rhizosphere). Bulk-soil

samples were a mix of three subsamples collected in three different locations for

each treatment plot. Rhizosphere samples consisted of soil adhering to total roots of

three crop plants collected from each treatment plot. The roots were shaken

vigorously to separate the rhizo soil. All samples were collected in triplicate,

brought to laboratories, stored in polyethylene bags at 4�C for no more than

24–48 h before soil microbiological analyses were conducted.

6 Impact of Innovative Agricultural Practices of Carbon Sequestration 151



6.5.1 Microbial Counts

Microbial counts were performed according to Italian official methods (Picci and

Nannipieri 2003). Briefly, soil samples (10 g) were shaken for 30 min in 90 ml of

physiological solution containing 0.162 g of tetrasodium pyrophosphate to detach

the bacteria from soil particles. After soil particles were allowed to settle for

15 min, the solution was diluted tenfold in a series. Selected populations of soil

microbial community were detected at 28�C by using the Surface Spread Plate

Count Method (aerobic bacteria) and the Pour Method (anaerobic bacteria). Three

plates were used per each dilution. Total heterotrophic aerobic bacteria were

counted in Plate Count Agar (Oxoid Ltd., Oxford, UK). The plates were incubated

for 3 days.

Mould and yeast were cultivated on Malt Agar (Oxoid Ltd., Oxford, UK)

supplied with chloramphenicol (100 mg L�1) for 3 days (Allievi and Quaroni

2003).

For the isolation of actinomycetes, Starch-Casein Agar (10 g soluble starch,

0.30 g casein, 2 g KNO3, 2 g NaCl, 2 g K2HPO4, 0.01 g FeSO4, 0.05 g MgSO4,

0.02 g CaCO3, 1,000 ml distilled water, 17 g bacteriological agar, pH 7.0) was used

(Kuster and Williams 1964). The medium also contained cycloheximide at

100 mg ml�1 to minimize fungal contamination. The plates were incubated for

14 days.

The medium used for aerobic and anaerobic cellulolytic bacteria was composed

by 5 g L�1 carboximethylcellulose (CMC) (Sigma-Aldrich Chemie GmbH,

Steinheim, Germany), 1 g L�1 (NH4)NO3, 1 g L�1 yeast extract, 50 ml L�1 stan-

dard salt solution, 1 ml L�1 trace elements solution, 15 g L�1 bacteriological agar,

at pH 7.0. The plates, incubated in aerobic or anaerobic (Oxoid’s Anaerogen™
System) (Allievi and M€oller 1992) conditions for 7 days, were stained with Congo

red (0.1%) for 20 min and bleached with NaCl (5 M) for 20 min to put in evidence

cellulolytic activities by developing clear haloes around the colonies (Kluepfel

1988). All microbial counts were carried out in triplicate and microbiological

data were expressed as CFU g�1 of dry soil.

6.5.2 Active Fungal Mycelium

Metabolically active hyphae were estimated by fluorescence microscopy. Soil

samples were sieved through a 2-mm mesh, suspended in a solution (1 g of fresh

soil in 100 ml) of phosphate buffer (60 mM, pH 7.5), and homogenized at 6,000 rpm

for 2 min. 0.5 ml of suspension were collected and filtered under vacuum on

nitrocellulose filter with a pore size of 0.45 mm. The sample was treated with

fluorescein diacetate (FDA) (S€oderstr€om 1977, 1979). This stain penetrates rapidly

in cells and is hydrolyzed to fluorescein by different enzymes such as protease,

lipase, and esterase. After clearing by immersion oil, the preparations for active
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mycelia were observed at a magnification of 400� and 20 microscopic fields were

counted. Active mycelia were estimated by the intersection method (Olson 1950)

and their mass calculated on the basis of an average hyphae cross section of

9.3 � 10�6 mm2, a density of 1.1 g ml�1 and a dry mass of 15% of wet mass

(Berg and S€oderstr€om 1979). The fungal biomass was expressed as mg of fungal

biomass per gram of soil dry weight.

6.5.3 Microbial Biomass

Microbial biomass (Cmic) was determined by the SIR method (Anderson and

Domsch 1978) that is based on the measurement of CO2 evolution from soil in

response to addition of glucose, an easily mineralizable substrate. The magnitude of

the respiratory response, as measured after incubation under controlled temperature

and humidity conditions, is related to the amount of active biomass in the soil

sample, and can be converted to mg of microbial biomass carbon using a conversion

factor introduced by Sparling (1995):

Cmic(mg C g�1d.w:Þ ¼ 50:4� respiration rate ðml CO2 g
�1d:w:h�1Þ

Microbial biomass C was measured by mixing in 30 ml vials 1 g of each soil

sample (sieved through a 2-mm mesh) with 2 ml of 75 mM D-glucose (27.3 mg g�1

soil d.w.). The vials were then sealed tightly and incubated for 4 h in the dark at

25�C. The evolution of CO2 was measured by gas chromatography (Fisons GC

8000 series). The CO2 values were corrected for the CO2 measured in a blanc vial

containing only the soil sample and 2 ml of water, and were reported as mg of

microbial carbon.

6.5.4 Microbial Activity

Soil microbial activity can be estimated by measuring CO2 respired from soil, as a

well-established parameter to monitor SOM decomposition (Anderson 1982). Soil

respiration is highly variable and its natural fluctuation depends on substrate

availability, moisture, and temperature (Alvarez et al. 1995; Brookes 1995). For

valid comparisons among soils, respiration measurements must be conducted under

controlled laboratory conditions (Anderson 1982). Here, the basal respiration of

soil samples was estimated by gas chromatography (Fisons GC 8000 series) as CO2

evolution in standard conditions (4 h of incubation at 25�C, at dark), after adding
2 ml distilled water to 1 g of soil (Degens et al. 2000). The basal respiration was

expressed in mg CO2 evolved per gram soil per unit of time. Therefore, the rate of

OM mineralization and, hence, the potential capacity of soil to accumulate or
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dissipate carbon, is comprised in the coefficient of endogenous mineralization

(CEM) that was calculated from soil respiration and SOM content, whereby CEM

represents the CO2 evolved from soil per unit of organic C.

6.5.5 Statistical Analyses

To assess the differences among the project treatments as well as among years in

each experimental site, data for cultivable microbial populations were analyzed by

using XLSTAT-6.1 and applying standard analyses of variance (one-way and two-

way ANOVA) at p � 0.05 level.

The three-way ANOVA followed by Holm–Sidak post hoc test for pair-wise

comparison of means (at p � 0.05 level) was used to elaborate data of active fungal

mycelium (AFM), microbial biomass and microbial respiration and to assess the

differences among treatments and experimental sites, as well as those between bulk

soil and rhizo soil. A two-way ANOVA was performed for CEM since only bulk-

soil values for organic carbon were available due to missing measurements of SOM

in the rhizosphere. Statistical analyses were performed by using Sigma-Stat-3.1 for

Windows software package.

6.6 Effects of Compost Amendments

Soil managements, such as traditional and minimum tillage, induce reduction of

SOM content and decrease of soil structural stability and, thus, have a great impact

on functional processes of soil microbial communities. Application of materials

rich in organic matter, such as compost, may be used to recover and/or improve soil

structure and fertility. Amendments with compost can also strongly influence and

modify the size, biodiversity, and activity of the microbial communities in soil

(Albiach et al. 2000). Since compost is a source of nutrients which can be used by

microorganisms, compost addition usually increases soil microbial biomass and

global activity (Bailey and Lazarovits 2003).

6.6.1 Microbial Counts

The effect of compost amendment (COM-2) on the biomass of cultivable

communities, as compared to traditional (TRA) and minimum (MIN) tillage, was

studied in three different experimental sites (Napoli, Torino, and Piacenza) of the

MESCOSAGR project during 3 years (2006, 2007, and 2008).

Microbial populations were significantly affected by agronomic practices. In

fact, in all three sites the microbial populations were drastically reduced after
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3 years of experimentation in both bulk soil and rhizo soil. This trend was most

marked in field plots at Napoli, in which all enumerated microbial populations in

COM-2 soils were 1 Log CFU g�1 smaller than those found in TRA and MIN soils.

In particular, the COM-2 bulk soil showed a negative cumulated effect on total

heterotrophic aerobic bacteria, fungi, actinomycetes, and aerobic and anaerobic

cellulolytic bacteria due to repeated compost applications to soil. In fact, the

Fig. 6.2 (continued)
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amount of microbial populations after the first compost application (2006)

increased significantly more in COM-2 than in TRA and MIN (Fig. 6.2a, b), before

declining in the following 2 years (2007–2008). A similar trend was observed in

maize rhizo soil at Napoli (Fig. 6.3a, b), whereby a significant abrupt reduction of

aerobic (from 8.07 � 0.08 to 6.21 � 0.16 Log CFU g�1) and anaerobic (from

6.72 � 0.12 to 4.93 � 0.05 Log CFU g�1) cellulolytic bacteria was observed in

the third year of compost amendments (Fig. 6.3b).

At the Piacenza site, COM-2 plot was characterized by the lowest microbial

values mainly in 2008 year (Fig. 6.2a, b), even though all treatments negatively

influenced microbial populations in bulk soil for all 3 years of experimentation. The

cumulative negative effect was clearly detectable in aerobic and anaerobic cellulo-

lytic bacteria, which showed a decrease of 1–2 Log cycles in the third treatment

Fig. 6.2 Effect of management practices (TRA traditional amendment, MIN minimum tillage,

COM-2 compost amendment) on (a) total aerobic bacteria, fungi, and actinomycetes (mean of

Log CFU g�1 of soil � SE) in bulk soils of Piacenza (Pc), Napoli (Na), and Torino (To). Different
letters indicate significant difference among treatments and years (ANOVA–Tukey test; p < 0.05)

within site (b) aerobic and anaerobic cellulolytic bacteria (mean of Log CFU g�1 of soil � SE) in

bulk soils of Piacenza (Pc), Napoli (Na), and Torino (To). Different letters indicate significant
difference among treatments and years (ANOVA–Tukey test; p < 0.05) within site
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year (Fig. 6.2b). The reduction of microbial populations, and particularly of cellu-

lolytic bacteria, is interesting since the cellulose degrading enzymes of these

populations are directly involved in key OM decomposition steps. In fact, the

reduction of functional group of cellulolytic bacteria may result in an increase of

organic matter stabilization due to compost addition. Even if this negative behavior

Fig. 6.3 (continued)
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was detected also in the rhizo soil of Napoli, no significant differences among soil

management treatments were observed in Piacenza for aerobic and anaerobic

cellulolytic bacteria in maize rhizo soil all through the 3 years (Fig. 6.3b). There-

fore, the detrimental effect of compost may have been reduced by root exudation in

the rhizosphere of maize cropping, as an additional organic carbon source

stimulating the microbial growth. The size and composition of rhizosphere micro-

flora is mostly plant-dependent, a phenomenon known as the “rhizosphere effect”

(Burr and Caesar 1984) and is attributed to emission of root exudates. Composition

of exudates was shown to depend on plant species (Wieland et al. 2001; Singh et al.

2007), as well as on the plant development stage (Jaeger et al. 1999; Yang and

Crowley 2000; Feng et al 2003), environmental conditions, and management

practices (Paterson and Sim 1999, 2000).

Fig. 6.3 Effect of management practices (TRA traditional amendment, MIN minimum tillage,

COM-2 compost amendment) on (a) total aerobic bacteria, fungi, and actinomycetes (mean of

Log CFU g�1 of soil � SE) in rhizo soils of Piacenza (Pc), Napoli (Na), and Torino (To). Different
letters indicate significant difference among treatments and years (ANOVA–Tukey test; p < 0.05)

within site (b) aerobic and anaerobic cellulolytic bacteria (mean of Log CFU g�1 of soil � SE) in

rhizo soils of Piacenza (Pc), Napoli (Na), and Torino (To). Different letters indicate significant
differences among treatments and years (ANOVA–Tukey test; p < 0.05) within site
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Results different from those of Napoli and Piacenza were obtained from Torino,

where compost application did not show the same cumulative effect on soil

microbial communities in either bulk or rhizo soil. In fact, bulk soil from

COM-2 did not reveal significant difference among the three experimental years

in microbial densities of heterotrophic aerobic bacteria, actinomycetes, and aerobic

cellulolytic bacteria. By contrast, in 2008, anaerobic cellulolytic bacteria and fungi

slightly increased or decreased, respectively (Fig. 6.2a, b). However, the medium

used in this study for fungal population mainly selects for a physiological type of

fungi characterized by rapid germination of spores and high rate of mycelial

growth. Such fungi, which are pioneer colonizers, are able to use ephemeral

substrates readily. Their rapid growth results in a sudden spike of activity followed

by a rapid decline, since they are unable to degrade abundant substrates such as the

resistant ligno-cellulosic structures present in the green compost of this study.

Overall, microbial populations detected in Torino rhizo soil at the third year of

experimentation (2008) showed a significant decrease of 1–2 Log CFU g�1 for all

soil treatments.

The different effect of compost amendment on cultivable microbial biomass at

the three field sites should be ascribed to different soil texture and climatic

conditions, which are the main determinants of structure and activity of microbial

communities. Moreover, the compost used in the experiments was a green waste

compost (for chemical composition of the compost see Chaps. 3 and 4). Green

waste compost contains both readily decomposable (cellulose) and more recalci-

trant (lignin) fractions from plant litter (Standing and Killham 2007). In a short-

term experiment, Pérez-Piqueres et al. (2006) evaluated the impact of organic

amendments on soil microbial characteristics by using green waste and spent

mushroom composts. They found that the microflora in two different soils was

influenced by the type of compost. Green waste compost did not modify the

densities of cultivable bacteria and fungi in either soil, while the spent mushroom

compost significantly increased bacterial and fungal densities in both the clayey and

sandy-silty-clay soil, respectively.

Therefore, the cumulated negative effect recorded in Napoli and Piacenza sites

(silty-clay-loam soils) may be due to an interaction of compost with the abundant

clay particles, which might protect organic matter physically and/or chemically.

The mechanism by which organic matter is adsorbed on clay determines its

bioaccessibility and the ability of microorganisms to use OM as substrate and to

produce extracellular enzymes. Moreover, the presence of chaotropic and

antichaotropic ions can influence the nutritional status of microhabitats (Stotzky

1997). By contrast, in Torino bulk soil with a low content of clay (sandy-loam soil),

compost amendment led to a significant microflora stimulation, as compared to

traditional and minimum tillage.

The largest number of cultivable microorganisms found only in the first experi-

mental year in the bulk soil of COM-2 at all experimental sites should be attributed

to the introduction of new community members with the compost rather than to a

stimulation of the indigenous community. In fact, both in Napoli and Piacenza, the

negative effects on microorganisms were generally observed at the end of the third

experimental year.
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6.6.2 AFM, Microbial Biomass and Activity

The results of microbial counts were confirmed by evaluating active fungal biomass

(AFM), microbial carbon (Cmic), and soil respiration. The soils of Torino and

Napoli showed statistically significant differences for microbial and fungal biomass

and CEM in 2008 and for all investigated parameters in 2007 (Table 6.1). In the

third year (2008) of experimentation (Table 6.1), active fungal biomass (AFM)

and microbial carbon (Cmic) were significantly affected by compost amendment

(COM-2). Moreover, when considering the variability within groups, a significant

effect was observed for soil (bulk/rhizo) and site (Napoli/Torino), as well as for

Table 6.1 Levels of significance (p values from ANOVA) for effects of compost amendments on

microbial biomass and activity in bulk soil and rhizo soil at Napoli and Torino sites, and differences

between years

AFM Cmic Respiration CEM

dF p dF p

2007 (Three-way) 2007 (Two-way)

Treatments (TRA-COM) 1 0.201 0.524 0.624 Treatments

(TRA-COM)

1 0.239

Soil (Bulk–Rhizo) 1 0.164 <0.001 0.039 Site (Napoli–Torino) 1 <0.001

Site (Napoli–Torino) 1 0.002 <0.001 0.001 Treatments � site 1 0.594

Treatments � soil 1 0.469 0.550 0.735

Treatments � site 1 0.149 0.723 0.850

Soil � site 1 0.625 <0.001 0.022

Treatments � soil � site 1 0.611 0.374 0.891

2008 (Three-way) 2008 (Two-way)

Treatments (TRA-

COM-MIN)

2 0.013 0.019 0.068 Treatments

(TRA-COM-

MIN)

2 0.001

Soil (Bulk–Rhizo) 1 <0.001 <0.001 0.002 Site (Napoli–Torino) 1 <0.001

Site (Napoli–Torino) 1 <0.001 <0.001 0.147 Treatments � site 2 0.035

Treatments � soil 2 0.007 0.104 0.405

Treatments � site 2 0.687 0.012 0.079

Soil � site 1 <0.001 <0.001 <0.001

Treatments � soil � site 2 0.019 0.089 0.091

2007–2008 (Three-way) 2007–2008
(Two-way)

Years (2007–2008) 1 <0.001 <0.001 <0.001 Years (2007–2008) 1 0.734

Site (Napoli–Torino) 1 0.004 0.084 <0.001 Site (Napoli–Torino) 1 <0.001

Soil (Bulk–Rhizo) 1 <0.001 <0.001 0.001 Years � site 1 <0.001

Years � site 1 <0.001 <0.001 <0.001

Years � soil 1 <0.001 <0.001 0.095

Site � soil 1 <0.001 <0.001 <0.001

Years � site � soil 1 0.001 0.028 0.028

dF degree of freedom, AFM active fungal mycelium, Cmic Microbial carbon, CEM coefficient of

endogenous mineralization, TRA conventional tillage, COM compost amendment, MIN minimum

tillage. Values in bold are statistically significant
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rhizosphere � site interaction (Table 6.1). The interaction treatment � soil was
significant only for AFM in 2008, while the interaction treatment � site was

significant only for Cmic COM-2 significantly reduced AFM in the Torino bulk

soil (Fig. 6.4), while no significant effect was detected in the bulk soil of Napoli

(Fig. 6.4). In the maize rhizo soil of both Napoli and Torino, a significant reduction
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in the amount of active fungal mycelium was detected in 2008, as compared to TRA

and MIN (Fig. 6.4). Moreover, in both 2007 and 2008, COM-2 reduced microbial

biomass of bulk soil and rhizo-soil in Napoli, though differences were statistically

significant only in 2008 (Fig. 6.4). In Torino, the microbial biomass of COM-2 bulk

soil in 2007 was significantly lower than in both TRA and MIN, while in 2008 the

rhizo-soil microbial biomass of COM-2 was significantly lower than in MIN

(Fig. 6.4). For both Napoli and Torino, the bulk-soil microbial biomass was

significantly larger in 2007 than in 2008, though the difference for rhizo-soil

microbial biomass between the 2 years was significant only for Napoli (Fig. 6.4).

Soil respiration was significantly affected by soil (bulk/rhizo) or site as well as
by soil–site interaction (Table 6.1). A soil respiration significantly lower than MIN

and TRA was found for COM-2 in Torino bulk soil in 2007 and in Napoli rhizo soil

in 2008, respectively (Fig. 6.4). In 2008, the coefficient of endogenous mineraliza-

tion (CEM) was significantly affected by both treatment and site (Fig. 6.5), and by
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their interaction. CEM was always lower in COM-2 than in TRA and MIN for both

Napoli and Torino field sites.

The general reduction of AFM, microbial biomass and respiration, for both bulk

soil and rhizo soil subjected to COM-2 may be explained by the protection that the

humified mature compost exerts on bio labile components of soil. This makes them

less bio accessible and thus more resistant to microbial degradation (Spaccini et al.

2002; Piccolo et al. 2004).

Another effect of COM-2 was the increase in soil moisture, compared to TRA

and MIN. According to Carter (2007), compost amendment improves soil porosity

and consequently favors an increase in soil moisture. For both Napoli and Torino

sites, water content in bulk soil for the 2008 experimental year was generally larger

than for 2007 (Fig. 6.4), whereas the rhizo soil at Napoli had lower water content

than the rhizo soil at Torino. More specifically, soil water content tended to be the

highest in compost-amended plots at both sites and in both years.

In addition, no difference was found in microbial biomass in soils subjected to

TRA andMIN, with the exception of Torino rhizo soil. This result may indicate that

the 3-year treatment period is too short to produce a significant improvement in soil

biological quality. In fact, various studies (Joergensen and Castillo 2001; Balota

et al. 2003; Franchini et al. 2005; Wright et al. 2008; Helgason et al. 2009) indicate

that the effects of different agricultural management on soil microbial communities

become evident after longer periods (at least 10 years). Nevertheless, AFM and

microbial biomass of rhizo soil in MIN were larger in 2008 than in TRA for the

Napoli and Torino sites, respectively.

6.7 Effects of the Biomimetic Catalyst

Humic substances comprise the major part of stable organic matter in environ-

mental compartments and their formation and decomposition processes regulate

global carbon cycling. An increase in the conformational stability of humus may

be achieved by increasing the intermolecular covalent bonds among heteroge-

neous humic molecules through a photo-oxidative coupling mediated by a biomi-

metic (enzyme-like) catalyst, such as synthetic water-soluble metal–porphyrins

(Piccolo et al. 2005). It was found that soil amendments with the biomimetic

catalyst affected the molecular structure of SOM and decreased its biotic degra-

dation, thereby significantly decreasing CO2 emission from soil (Gelsomino

et al. 2010; Piccolo et al. 2011). However, since new molecules added to soil,

though apparently harmless and eco-compatible, may deeply alter the behavior

of microbial populations through complex and unexpected interaction (biotic

and/or abiotic), we studied the impact of the biomimetic catalyst on the dyna-

mics of microbial soil populations in the different experimental fields of the

MESCOSAGR project.
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6.7.1 Microbial Counts

The CAT treatment showed hardly any long-term effects on cultivable microbial

populations, as evaluated in both bulk soil and rhizo soil. In fact, no significant

difference was found between CAT plots and their control (No-CAT) in any of

the experimental sites for the first 2 years of treatment (Figs. 6.6a, b and 6.7a, b).

Fig. 6.6 (continued)
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The only exception was in the Piacenza bulk soil that showed an increase in

actinomycete populations during the whole experimental period (Fig. 6.6a). This

long-term effect was probably due to the firm adsorption of the added

metal–porphyrin on the large amount of clay particles present in this soil, thereby

resulting in greater catalytic activity upon soil biotic and/or abiotic components.

In the last experimental year (2008), the CAT effect on the bulk-soil was the

same in the three different field sites, since it significantly affected the microbial

groups directly involved in OM mineralization. In fact, the number of total hetero-

trophic aerobic bacteria, fungi, actinomycetes, aerobic, and anaerobic cellulolytic

bacteria was significantly larger in CAT than in No-CAT by an extent of about

1 Log CFU g�1 cycle (Fig. 6.6a, b).

Fig. 6.6 Effect of synthetic metal–porphyrins addition on (a) total aerobic bacteria, fungi, and

actinomycetes (mean of Log CFU g�1 of soil � SE) in bulk-soils of Piacenza (Pc), Napoli (Na),

and Torino (To). Asterisk indicates significant at p < 0.05 within site and years. NO-CAT: control,

CAT: soil treated with biomimetic catalyst (b) aerobic and anaerobic cellulolytic bacteria (mean of

Log CFU g�1 of soil � SE) in bulk-soils of Piacenza (Pc), Napoli (Na), and Torino (To). Asterisk
indicates significant at p < 0.05 within site and years. NO-CAT: control, CAT: biomimetic

catalyst
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Conversely, it appears that CAT negatively affected the OM mineralization

communities in rhizo soils, although the effect on maize rhizo soil (Piacenza) was

different from that on wheat rhizo soil (Napoli and Torino). In particular, CAT did

not influence the cellulolytic bacteria in the wheat rhizo soils of both Napoli and

Torino with respect to No-CAT for all experimental years (Fig. 6.7a, b). By

contrast, CAT significantly affected microbial communities in maize rhizo soil.

Fig. 6.7 (continued)
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In fact, a decrease in the number of all cultivable microorganisms in Piacenza was

found after three experimentation years (Fig. 6.7a, b). However, this effect was

more extensive in fungi populations which decreased from 6.06 � 0.09 for No-

CAT to 5.03 � 0.08 Log CFU g�1 for CAT (Fig. 6.7a).

The different effect of CAT on microbial communities in rhizospheres of maize

and wheat may be due to different root systems and root activities. Maize plants

have more expanded root systems than wheat, and, thus, explore a greater volume

of soil and possibly induce a larger root exudation in the rhizosphere, to promote

microbial growth. It is known that when root exudates serve as sole source of C and

energy for soil microbes, root exudation is 2–2.6 times greater than in the case of

Fig. 6.7 Effect of synthetic metal–porphyrins addition on (a) total aerobic bacteria, fungi, and

actinomycetes (mean of Log CFU g�1 of soil � SE) in maize rhizosphere of Piacenza agronomic

station (Pc), and in wheat rhizosphere of Napoli (Na) and Torino (To) agronomic stations. Asterisk
indicates significant at p < 0.05 within site and years. NO-CAT: control, CAT: biomimetic

catalyst (b) aerobic and anaerobic cellulolytic bacteria (mean of Log CFU g�1 of soil � SE) in

maize rhizosphere of Piacenza agronomic station (Pc), and in wheat rhizosphere of Napoli (Na)

and Torino (To) agronomic stations. Asterisk indicates significant at p < 0.05 within site and

years. NO-CAT: control, CAT: biomimetic catalyst
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aseptically grown plants (Vancura et al. 1977; Prikryl and Vancura 1980). Thus, the

lower content of soil microbes in CAT suggests that a reduction in root exudate

stimulation has occurred, possibly because another source of C and energy was

made available to microbes by the CAT treatment. In fact, the enhanced growth of

microbial cells following root exudate stimulation is attributed to carbohydrates in

exudates (van Overbeek and van Elsas 1995). Therefore in the rhizosphere,

the activity of the catalyst on SOM may lead to release of novel organic molecules.

The consumption of such molecules by microbes may have depressed the increase

of the root exudates/microbial growth cycle observed in No-CAT rhizo soils.

Gelsomino et al. (2010) added the biomimetic catalyst on a microcosm soil with

and without maize plants and measured CO2 respiration (see also Chap. 10). They

found that while respiration was reduced in catalyst-treated bare soils, there was an

enhanced respiration when maize plants were present. Although these results are

intriguing, they are difficult to compare since our findings refer to maize rhizo-soil

microbial communities and were obtained from field experiments rather than in

microcosms.

Nevertheless, the significant decrease observed for maize rhizo soil under CAT

treatment suggests that maize plants appear as more suitable indicators than wheat

plants in highlighting the effect of the biomimetic catalyst. Furthermore, our

findings indicate that the biomimetic catalysts added to soil did not appear to be

harmful to cultivable microbial communities, since no lethal effect was recorded.

6.7.2 AFM, Microbial Biomass and Activity

CAT significantly affected soil respiration and CEM (Table 6.2). Moreover, signif-

icant differences between bulk soil and rhizo soil were found for all microbial

parameters (Table 6.2). The differences between sites were significant for Cmic in

2007 and 2008, as well as for respiration and CEM in 2008. Moreover, a significant

interaction soil � site was observed for AFM and Cmic (Table 6.2).

As for bulk soils, AFM in Napoli was larger in CAT than in No-CAT, though the

differences were not significant (Fig. 6.8), while in Torino AFM was first signifi-

cantly lower in CAT than in No-CAT in 2007 and, then, significantly larger in 2008

(Fig. 6.8). In the case of rhizo soils AFM found in CAT treatments was always

lower than in No-CAT, but the difference was significant only for Torino in 2007

(Fig. 6.8).

Microbial biomass was not found significantly different between CAT and No-

CAT in either bulk or rhizo soils throughout the experimental period for either

Napoli or Torino (Fig. 6.8).

Respiration showed a similar increasing trend from No-CAT to CAT treatments

in both Napoli and Torino and for either bulk soil or rhizo soil. However, the

increase was significant only for Napoli bulk soil in 2007 and Napoli rhizo soil in

2008 (Fig. 6.8).
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The coefficient of endogenous mineralization (CEM) in Napoli was significantly

larger in CAT than in No-CAT for both 2007 and 2008 years, while this was true for

Torino only in 2007 (Fig. 6.5). Regardless of treatment, CEM for Napoli soils was

greater than for Torino (Fig. 6.5).

When comparing wheat soil and maize soil (No-CAT/TRA), Cmic and respira-

tion showed significantly lower values in wheat soil (p ¼ 0.045 and p ¼ 0.029,

respectively). Water content in bulk soils was very similar for Napoli and Torino in

both years (Fig. 6.8). Rhizo-soil water content was lower in Napoli than in Torino.

Table 6.2 Levels of significance (p values from ANOVA) for effects of a biomimetic catalyst

(iron-porphyrin) addition to soil on microbial biomass and activity in bulk soil and rhizo soil at

Napoli and Torino sites, and differences between years

AFM Cmic Respiration CEM

dF p dF p

2007 (Three-way) 2007 (Two-way)

Treatments (CAT/NO-

CAT)

1 0.073 0.510 0.040 Treatments

(CAT/NO-CAT)

1 0.010

Soil (Bulk–Rhizo) 1 0.019 0.004 0.005 Site

(Napoli–Torino)

1 0.165

Site (Napoli–Torino) 1 0.422 0.015 0.893 Treatments � site 1 0.850

Treatments � soil 1 0.166 0.125 0.138

Treatments � site 1 0.159 0.857 0.710

Soil � site 1 0.931 <0.001 0.365

Treatments � soil � site 1 0.571 0.133 0.522

2008 (Three-way) 2008 (Two-way)

Treatments (CAT/NO-

CAT)

1 0.275 0.874 0.016 Treatments

(CAT/NO-CAT)

1 0.002

Soil (Bulk–Rhizo) 1 <0.001 <0.001 <0.001 Site

(Napoli–Torino)

1 <0.001

Site (Napoli–Torino) 1 0.154 0.003 <0.001 Treatments � Site 1 0.008

Treatments � soil 1 0.140 0.668 0.854

Treatments � site 1 0.816 0.487 0.049

Soil � site 1 0.002 <0.001 0.988

Treatments � soil � site 1 0.864 0.575 0.575

2007–2008 (Three-way) 2007–2008
(Two-way)

Years (2007–2008) 1 <0.001 <0.001 <0.001 Years (2007–2008) 1 <0.001

Site (Napoli–Torino) 1 0.280 0.030 0.033 Site

(Napoli–Torino)

1 0.008

Soil (Bulk–Rhizo) 1 <0.001 <0.001 <0.001 Years � site 1 0.082

Years � site 1 0.099 <0.001 0.050

Years � soil 1 <0.001 0.003 0.680

Site � soil 1 <0.001 0.025 0.505

Years � site � soil 1 <0.001 <0.001 0.512

dF degree of freedom, AFM active fungal mycelium, Cmic microbial carbon, CEM coefficient

of endogenous mineralization, CAT conventional tillage with addition of biomimetic catalyst,

NO-CAT conventional tillage without catalyst. Values in bold are statistically significant
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CAT addition increased water content in bulk soil with respect to No-CAT, whereas

it had an opposite effect in rhizo soil (Fig. 6.8).

CAT increased AFM, and microbial biomass in bulk soils, but had an opposite

effect in rhizo soil, well in agreement with plate-count results for total aerobic

bacteria, cellulolytic bacteria, fungi, and actinomycetes. CAT increased respiration

in both bulk and rhizo soils, thus suggesting, in line with CEM values, that the in

situ photo-polymerization of SOM unexpectedly favors instead of limiting CO2
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emissions. This result is consistent with the larger CO2 fluxes measured in the field

from CAT soils compared to No-CAT, although the emissions include root respira-

tion (see Chap. 9). Moreover, our findings are in line with the cited microcosm

experiment (Gelsomino et al. 2010) that revealed that the addition of

iron–porphyrin significantly reduced CO2 efflux from the unplanted soil, whereas

CO2 emission was stimulated when maize plants were present. Gelsomino et al.

(2010) hypothesized that the coarser root system induced by iron–porphyrin

favored enhanced destruction of soil macroaggregates, thus exposing physically

protected SOM to microbial decomposition. However, they were not able to

quantify the contribution to CO2 emission from soil of autotrophic respiration

(maize roots) and heterotrophic respiration (rhizosphere microorganisms).

Our data refer to the effect of CAT treatment on soils under wheat and they do

not take into account root respiration. Moreover, we found that respiration

increased in both the rhizo and bulk soils. Therefore, at least for bulk soils, the

explanation proposed by Gelsomino et al. (2010) should be definitely excluded.

However, there were contrasting responses of microbial communities to CAT for

either bulk or rhizo soils, and it is likely that root systems inhibit growth of the

microbial community. Despite the observed evidence of CO2 being released as

much or more in CAT than in No-CAT, the catalyst-assisted in situ photo-polymer-

ization of SOM has been shown to sequester organic C throughout the experimen-

tation period in all sites (see Chap. 4).

These contrasting results cannot be yet totally explained since the mechanism

underlying the interactions among the catalyst, microbial community, and root

systems is complex. However, a possible reason for such an opposite behavior

may be the fact that substrates for oxidative photo-polymerization are the phenolic

or oxidized aromatic moieties of SOM, which produce the free radicals, whose

coupling increases covalent bonds among humic molecules. These aromatic photo-

polymerized components of SOM certainly become more biologically stable in soil,

thus possibly explaining the reduction of AFM in some cases. Consequently, the

carbon-chain alkyl compounds of SOM may result more easily accessible to

microbial degradation due to alteration of humic conformations following separa-

tion of the photo-polymerized aromatic moieties.

It is also interesting to note that water content in rhizo soils is lower in CAT that

in No-CAT, while the opposite is true for bulk soils. This may be due to the fact

that the interaction of root systems with the catalyst induces an alteration of the

surrounding soil structure, thus limiting the water retention capacity. Such alter-

ation may also influence the size of the microbial community.

When comparing results for wheat and maize soils, it is evident that microbial

biomass and activity are larger under maize. Given that wheat and maize grow in

different seasons, climatic conditions could at least in part explain such differences

(Mahmood et al. 2005). However, it is important to recall that different plant

species produce different rhizosphere effects (Vancura et al. 1977; Cheng et al.

2003). There was a weak rhizosphere effect on fungal communities at both sites

under either maize or wheat. In contrast a positive rhizosphere effect on Cmic was

observed under maize at Torino, where, an increase of microbial biomass was

accompanied by an increase in respiration.
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6.8 Conclusion and Future Recommendations

First of all, our results highlight the importance of combining different approaches

to obtain complementary information on the microbiological status of agricultural

soils.

Amendment with compost appears to have a promising environmental applica-

tion, although its use depends on soil texture and clay content, as shown by our

studied sites. In fact, compost was found to decrease cultivable microorganisms,

microbial carbon, and coefficient of SOM mineralization in clayey soils, possibly

due to an increased physical and chemical protection of organic matter from

microbial attack. On the other hand, such an effect was not equally evident in soil

with lower clay content. Van Elsas et al. (2007) denied direct correlation between

abundance of microbial populations and their activities (e.g., N-fixation and

cellulosolytic activities). The activities are sometimes enhanced by an improved

nutrient availability caused by lower competition among microbial cells and by a

large concentration of “microbivores” (microbial-feeding microfauna such as mites

and nematodes), which keep bacterial abundance at a minimum. Thus, a poliphasic

approach including microfauna analyses is necessary to fully understand the com-

plex interactions within the soil food web.

The use of the biomimetic catalyst to fix and/or stabilize soil carbon by photo-

polymerization caused contrasting responses of soil microbial community. It

became evident from concomitant results of other MESCOSAGR groups that the

different effects of the catalyst depend on whether the soil is either planted or bare,

but also on plant species (maize or wheat), regardless of soil texture and climatic

conditions. Such results are consistent with the results obtained by the biotechno-

logical group of MESCOSAGR project (see Chap. 8).

It is thus hoped that further investigations will be conducted, to include analysis

of microfauna–microflora interactions, in order to reach a deeper understanding of

the long-term effects of compost and metal–porphyrin catalyst on carbon seques-

tration in soils cultivated with different plant species.
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