21 research outputs found
Development of a strontium optical lattice clock for the SOC mission on the ISS
The ESA mission "Space Optical Clock" project aims at operating an optical
lattice clock on the ISS in approximately 2023. The scientific goals of the
mission are to perform tests of fundamental physics, to enable space-assisted
relativistic geodesy and to intercompare optical clocks on the ground using
microwave and optical links. The performance goal of the space clock is less
than uncertainty and
instability. Within an EU-FP7-funded project, a strontium optical lattice clock
demonstrator has been developed. Goal performances are instability below and fractional inaccuracy .
For the design of the clock, techniques and approaches suitable for later space
application are used, such as modular design, diode lasers, low power
consumption subunits, and compact dimensions. The Sr clock apparatus is fully
operational, and the clock transition in Sr was observed with linewidth
as small as 9 Hz.Comment: 12 pages, 8 figures, SPIE Photonics Europe 201
Recurrent Bacteremia, a Complication of Cyanoacrylate Injection for Variceal Bleeding: Report of Two Cases and Review of the Literature
We report the first description of recurrent bacteremia in two patients after cyanoacrylate injection for gastric varices bleeding treated with antibiotics alone. Adapted and prolonged antibiotic treatment allowed a complete resolution of the infection with no relapse after more than 6 months. According to recent data, prophylactic antibiotics should be further investigated for patients with bleeding varices undergoing cyanoacrylate injection
Development of a strontium optical lattice clock for the SOC mission on the ISS
Ultra-precise optical clocks in space will allow new studies in fundamental
physics and astronomy. Within an European Space Agency (ESA) program, the Space
Optical Clocks (SOC) project aims to install and to operate an optical lattice
clock on the International Space Station (ISS) towards the end of this decade.
It would be a natural follow-on to the ACES mission, improving its performance
by at least one order of magnitude. The payload is planned to include an
optical lattice clock, as well as a frequency comb, a microwave link, and an
optical link for comparisons of the ISS clock with ground clocks located in
several countries and continents. Within the EU-FP7-SPACE-2010-1 project no.
263500, during the years 2011-2015 a compact, modular and robust strontium
lattice optical clock demonstrator has been developed. Goal performance is a
fractional frequency instability below 1x10^{-15}, tau^{-1/2} and a fractional
inaccuracy below 5x10^{-17}. Here we describe the current status of the
apparatus' development, including the laser subsystems. Robust preparation of
cold {88}^Sr atoms in a second stage magneto-optical trap (MOT) is achieved.Comment: 27 Pages, 15 figures, Comptes Rendus Physique 201