47 research outputs found

    Daratumumab plus lenalidomide and dexamethasone for untreated myeloma

    Get PDF
    This is an accepted manuscript of an article published by Massachusetts Medical Society in New England Journal of Medicine on 30/05/2019, available online: https://doi.org/10.1056/NEJMoa1817249 The accepted version of the publication may differ from the final published version.Copyright © 2019 Massachusetts Medical Society. Lenalidomide plus dexamethasone is a standard treatment for patients with newly diagnosed multiple myeloma who are ineligible for autologous stem-cell transplantation. We sought to determine whether the addition of daratumumab would significantly reduce the risk of disease progression or death in this population. METHODS We randomly assigned 737 patients with newly diagnosed multiple myeloma who were ineligible for autologous stem-cell transplantation to receive daratumumab plus lenalidomide and dexamethasone (daratumumab group) or lenalidomide and dexamethasone alone (control group). Treatment was to continue until the occurrence of disease progression or unacceptable side effects. The primary end point was progression-free survival. RESULTS At a median follow-up of 28.0 months, disease progression or death had occurred in 240 patients (97 of 368 patients [26.4%] in the daratumumab group and 143 of 369 patients [38.8%] in the control group). The estimated percentage of patients who were alive without disease progression at 30 months was 70.6% (95% confidence interval [CI], 65.0 to 75.4) in the daratumumab group and 55.6% (95% CI, 49.5 to 61.3) in the control group (hazard ratio for disease progression or death, 0.56; 95% CI, 0.43 to 0.73; P<0.001). The percentage of patients with a complete response or better was 47.6% in the daratumumab group and 24.9% in the control group (P<0.001). A total of 24.2% of the patients in the daratumumab group, as compared with 7.3% of the patients in the control group, had results below the threshold for minimal residual disease (1 tumor cell per 105 white cells) (P<0.001). The most common adverse events of grade 3 or 4 were neutropenia (50.0% in the daratumumab group vs. 35.3% in the control group), anemia (11.8% vs. 19.7%), lymphopenia (15.1% vs. 10.7%), and pneumonia (13.7% vs. 7.9%).Published versio

    A mini-Neptune from TESS and CHEOPS around the 120 Myr Old AB Dor Member HIP 94235

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) mission has enabled discoveries of the brightest transiting planet systems around young stars. These systems are the benchmarks for testing theories of planetary evolution. We report the discovery of a mini-Neptune transiting a bright star in the AB Doradus moving group. HIP 94235 (TOI-4399, TIC 464646604) is a Vmag = 8.31 G-dwarf hosting a 3.000.28+0.32R{3.00}_{-0.28}^{+0.32}\,{R}_{\oplus } mini-Neptune in a 7.7 day period orbit. HIP 94235 is part of the AB Doradus moving group, one of the youngest and closest associations. Due to its youth, the host star exhibits significant photometric spot modulation, lithium absorption, and X-ray emission. Three 0.06% transits were observed during Sector 27 of the TESS Extended Mission, though these transit signals are dwarfed by the 2% peak-to-peak photometric variability exhibited by the host star. Follow-up observations with the Characterising Exoplanet Satellite confirmed the transit signal and prevented the erosion of the transit ephemeris. HIP 94235 is part of a 50 au G-M binary system. We make use of diffraction limited observations spanning 11 yr, and astrometric accelerations from Hipparcos and Gaia, to constrain the orbit of HIP 94235 B. HIP 94235 is one of the tightest stellar binaries to host an inner planet. As part of a growing sample of bright, young planet systems, HIP 94235 b is ideal for follow-up transit observations, such as those that investigate the evaporative processes driven by high-energy radiation that may sculpt the valleys and deserts in the Neptune population

    Constitutive Activation of STAT3 in Myeloma Cells Cultured in a Three-Dimensional, Reconstructed Bone Marrow Model

    No full text
    Malignant cells cultured in three-dimensional (3D) models have been found to be phenotypically and biochemically different from their counterparts cultured conventionally. Since most of these studies employed solid tumor types, how 3D culture affects multiple myeloma (MM) cells is not well understood. Here, we compared MM cells (U266 and RPMI8226) in a 3D culture model with those in conventional culture. While the conventionally cultured cells were present in single cells or small clusters, MM-3D cells grew in large spheroids. We discovered that STAT3 was the pathway that was more activated in 3D in both cell lines. The active form of STAT3 (phospho-STAT3 or pSTAT3), which was absent in MM cells cultured conventionally, became detectable after 1&ndash;2 days in 3D culture. This elevated pSTAT3 level was dependent on the 3D environment, since it disappeared after transferring to conventional culture. STAT3 inhibition using a pharmacological agent, Stattic, significantly decreased the cell viability of MM cells and sensitized them to bortezomib in 3D culture. Using an oligonucleotide array, we found that 3D culture significantly increased the expression of several known STAT3 downstream genes implicated in oncogenesis. Since most primary MM tumors are naturally STAT3-active, studies of MM in 3D culture can generate results that are more representative of the disease

    Frequent Occurrence of Highly Expanded but Unrelated B-Cell Clones in Patients with Multiple Myeloma

    Get PDF
    <div><p>Clonal diversity in multiple myeloma (MM) includes both MM-related and MM-unrelated clonal expansions which are subject to dominance exerted by the MM clone. Here we show evidence for the existence of minor but highly expanded unrelated B-cell clones in patients with MM defined by their complementary determining region 3 (CDR3) peak. We further characterize these clones over the disease and subsequent treatment. Second clones were identified by their specific IgH-VDJ sequences that are distinct from those of dominant MM clones. Clonal frequencies were determined through semi-quantitative PCR, quantitative PCR and single-cell polymerase chain reaction of the clone-specific sequence. In 13/74 MM patients, more than one dominant CDR3 peak was identified with 12 patients (16%) being truly biclonal. Second clones had different frequencies, were found in different locations and were found in different cell types from the dominant MM clone. Where analysis was possible, they were shown to have chromosomal characteristic distinct from those of the MM clone. The frequency of the second clone also changed over the course of the disease and often persisted despite treatment. Molecularly-defined second clones are infrequent in monoclonal gammopathy of undetermined significance (MGUS, 1/43 individuals or 2%), suggesting that they may arise at relatively late stages of myelomagenesis. In further support of our findings, biclonal gammopathy and concomitant MM and CLL (chronic lymphocytic leukemia) were confirmed to originate from two unrelated clones. Our data supports the idea that the clone giving rise to symptomatic myeloma exerts clonal dominance to prevent expansion of other clones. MM and second clones may arise from an underlying niche permissive of clonal expansion. The clinical significance of these highly expanded but unrelated clones remains to be confirmed. Overall, our findings add new dimensions to evaluating related and unrelated clonal expansions in MM and the impact of disease evolution and treatment on clonal diversity.</p></div
    corecore