6 research outputs found

    RNA Sequencing Identifies Transcriptionally Viable Gene Fusions in Esophageal Adenocarcinomas

    Get PDF
    Esophageal adenocarcinoma (EAC) is a deadly cancer with increasing incidence in the U.S., but mechanisms underlying pathogenesis are still mostly elusive. In addressing this question, we assessed gene-fusion landscapes by comprehensive RNA sequencing (RNAseq) of 55 pre-treatment EAC and 49 non-malignant biopsy tissues from patients undergoing endoscopy for Barrett’s esophagus. In this cohort, we identified 21 novel candidate EAC-associated fusions occurring in 3.33%-11.67% of EACs. Two candidate fusions were selected for validation by PCR and Sanger sequencing in an independent set of pre-treatment EAC (N=115) and non-malignant (N=183) biopsy tissues. In particular, we observed RPS6KB1–VMP1 gene fusion as a recurrent event occurring in ~10% of EAC cases. Notably, EAC cases harboring RPS6KB1–VMP1 fusions exhibited significantly poorer overall survival as compared to fusion-negative cases. Mechanistic investigations established that the RPS6KB1–VMP1 transcript coded for a fusion protein which significantly enhanced the growth rate of non-dysplastic Barrett’s esophagus cells. Compared to the wild-type VMP1 protein, which mediates normal cellular autophagy, RPS6KB1–VMP1 fusion exhibited aberrant subcellular localization and was relatively ineffective in triggering autophagy. Overall, our findings identified RPS6KB1–VMP1 as a genetic fusion that promotes EAC by modulating autophagy-related processes, offering new insights into the molecular pathogenesis of esophageal adenocarcinomas

    RNA Sequencing Identifies Transcriptionally Viable Gene Fusions in Esophageal Adenocarcinomas

    No full text
    Esophageal adenocarcinoma (EAC) is a deadly cancer with increasing incidence in the U.S., but mechanisms underlying pathogenesis are still mostly elusive. In addressing this question, we assessed gene-fusion landscapes by comprehensive RNA sequencing (RNAseq) of 55 pre-treatment EAC and 49 non-malignant biopsy tissues from patients undergoing endoscopy for Barrett’s esophagus. In this cohort, we identified 21 novel candidate EAC-associated fusions occurring in 3.33%-11.67% of EACs. Two candidate fusions were selected for validation by PCR and Sanger sequencing in an independent set of pre-treatment EAC (N=115) and non-malignant (N=183) biopsy tissues. In particular, we observed RPS6KB1–VMP1 gene fusion as a recurrent event occurring in ~10% of EAC cases. Notably, EAC cases harboring RPS6KB1–VMP1 fusions exhibited significantly poorer overall survival as compared to fusion-negative cases. Mechanistic investigations established that the RPS6KB1–VMP1 transcript coded for a fusion protein which significantly enhanced the growth rate of non-dysplastic Barrett’s esophagus cells. Compared to the wild-type VMP1 protein, which mediates normal cellular autophagy, RPS6KB1–VMP1 fusion exhibited aberrant subcellular localization and was relatively ineffective in triggering autophagy. Overall, our findings identified RPS6KB1–VMP1 as a genetic fusion that promotes EAC by modulating autophagy-related processes, offering new insights into the molecular pathogenesis of esophageal adenocarcinomas
    corecore