1,511 research outputs found

    A Faster Circular Binary Segmentation Algorithm for the Analysis of Array CGH Data

    Get PDF
    Motivation: Array CGH technologies enable the simultaneous measurement of DNA copy number for thousands of sites on a genome. We developed the circular binary segmentation (CBS) algorithm to divide the genome into regions of equal copy number (Olshen {\it et~al}, 2004). The algorithm tests for change-points using a maximal tt-statistic with a permutation reference distribution to obtain the corresponding pp-value. The number of computations required for the maximal test statistic is O(N2),O(N^2), where NN is the number of markers. This makes the full permutation approach computationally prohibitive for the newer arrays that contain tens of thousands markers and highlights the need for a faster. algorithm. Results: We present a hybrid approach to obtain the pp-value of the test statistic in linear time. We also introduce a rule for stopping early when there is strong evidence for the presence of a change. We show through simulations that the hybrid approach provides a substantial gain in speed with only a negligible loss in accuracy and that the stopping rule further increases speed. We also present the analysis of array CGH data from a breast cancer cell line to show the impact of the new approaches on the analysis of real data. Availability: An R (R Development Core Team, 2006) version of the CBS algorithm has been implemented in the ``DNAcopy\u27\u27 package of the Bioconductor project (Gentleman {\it et~al}, 2004). The proposed hybrid method for the pp-value is available in version 1.2.1 or higher and the stopping rule for declaring a change early is available in version 1.5.1 or higher

    Estimating the Empirical Lorenz Curve and Gini Coefficient in the Presence of Error

    Get PDF
    The Lorenz curve is a graphical tool that is widely used to characterize the concentration of a measure in a population, such as wealth. It is frequently the case that the measure of interest used to rank experimental units when estimating the empirical Lorenz curve, and the corresponding Gini coefficient, is subject to random error. This error can result in an incorrect ranking of experimental units which inevitably leads to a curve that exaggerates the degree of concentration (variation) in the population. We explore this bias and discuss several widely available statistical methods that have the potential to reduce or remove the bias in the empirical Lorenz curve. The properties of these methods are examined and compared in a simulation study. This work is motivated by a health outcomes application which seeks to assess the concentration of black patient visits among primary care physicians. The methods are illustrated on data from this study

    Statistical Evaluation of Evidence for Clonal Allelic Alterations in array-CGH Experiments

    Get PDF
    In recent years numerous investigators have conducted genetic studies of pairs of tumor specimens from the same patient to determine whether the tumors share a clonal origin. These studies have the potential to be of considerable clinical significance, especially in clinical settings where the distinction of a new primary cancer and metastatic spread of a previous cancer would lead to radically different indications for treatment. Studies of clonality have typically involved comparison of the patterns of somatic mutations in the tumors at candidate genetic loci to see if the patterns are sufficiently similar to indicate a clonal origin. More recently, some investigators have explored the use of array CGH for this purpose. Standard clustering approaches have been used to analyze the data, but these existing statistical methods are not suited to this problem due to the paired nature of the data, and the fact that there exists no ā€œgold standardā€ diagnosis to provide a definitive determination of which pairs are clonal and which pairs are of independent origin. In this article we propose a new statistical method that focuses on the individual allelic gains or losses that have been identified in both tumors, and a statistical test is developed that assesses the degree of matching of the locations of the markers that indicate the endpoints of the allelic change. The validity and statistical power of the test is evaluated, and it is shown to be a promising approach for establishing clonality in tumor samples

    Inferential Methods to Assess the Difference in the Area Under the Curve From Nested Binary Regression Models

    Get PDF
    The area under the curve (AUC) is the most common statistical approach to evaluate the discriminatory power of a set of factors in a binary regression model. A nested model framework is used to ascertain whether the AUC increases when new factors enter the model. Two statistical tests are proposed for the difference in the AUC parameters from these nested models. The asymptotic null distributions for the two test statistics are derived from the scenarios: (A) the difference in the AUC parameters is zero and the new factors are not associated with the binary outcome, (B) the difference in the AUC parameters is less than a strictly positive value. A confidence interval for the difference in AUC parameters is developed. Simulations are generated to determine the finite sample operating characteristics of the tests and a pancreatic cancer data example is used to illustrate this approach

    Relativistic spin precession in the binary PSR J1141āˆ’-6545

    Full text link
    PSR J1141āˆ’-6545 is a precessing binary pulsar that has the rare potential to reveal the two-dimensional structure of a non-recycled pulsar emission cone. It has undergone āˆ¼25degā”\sim 25 \deg of relativistic spin precession in the āˆ¼18\sim18 years since its discovery. In this paper, we present a detailed Bayesian analysis of the precessional evolution of the width of the total intensity profile, to understand the changes to the line-of-sight impact angle (Ī²\beta) of the pulsar using four different physically motivated prior distribution models. Although we cannot statistically differentiate between the models with confidence, the temporal evolution of the linear and circular polarisations strongly argue that our line-of-sight crossed the magnetic pole around MJD 54000 and that only two models remain viable. For both these models, it appears likely that the pulsar will precess out of our line-of-sight in the next 3āˆ’53-5 years, assuming a simple beam geometry. Marginalising over Ī²\beta suggests that the pulsar is a near-orthogonal rotator and provides the first polarization-independent estimate of the scale factor (A\mathbb{A}) that relates the pulsar beam opening angle (Ļ\rho) to its rotational period (PP) as Ļ=APāˆ’0.5\rho = \mathbb{A}P^{-0.5} : we find it to be >6Ā degĀ s0.5> 6 \rm~deg~s^{0.5} at 1.4 GHz with 99\% confidence. If all pulsars emit from opposite poles of a dipolar magnetic field with comparable brightness, we might expect to see evidence of an interpulse arising in PSR J1141āˆ’-6545, unless the emission is patchy.Comment: Accepted for publication in Astrophysical Journal Letter

    Technique of mass multiplication of Tenobracon deesae (Cam.) hymenoptera: BraconidƦ for use against sugarcane and maize borers

    Get PDF
    This article does not have an abstract

    The UTMOST pulsar timing programme I: overview and first results

    Full text link
    We present an overview and the first results from a large-scale pulsar timing programme that is part of the UTMOST project at the refurbished Molonglo Observatory Synthesis Radio Telescope (MOST) near Canberra, Australia. We currently observe more than 400 mainly bright southern radio pulsars with up to daily cadences. For 205 (8 in binaries, 4 millisecond pulsars) we publish updated timing models, together with their flux densities, flux density variability, and pulse widths at 843 MHz, derived from observations spanning between 1.4 and 3 yr. In comparison with the ATNF pulsar catalogue, we improve the precision of the rotational and astrometric parameters for 123 pulsars, for 47 by at least an order of magnitude. The time spans between our measurements and those in the literature are up to 48 yr, which allows us to investigate their long-term spin-down history and to estimate proper motions for 60 pulsars, of which 24 are newly determined and most are major improvements. The results are consistent with interferometric measurements from the literature. A model with two Gaussian components centred at 139 and 463Ā kmā€…sāˆ’1463~\text{km} \: \text{s}^{-1} fits the transverse velocity distribution best. The pulse duty cycle distributions at 50 and 10 per cent maximum are best described by log-normal distributions with medians of 2.3 and 4.4 per cent, respectively. We discuss two pulsars that exhibit spin-down rate changes and drifting subpulses. Finally, we describe the autonomous observing system and the dynamic scheduler that has increased the observing efficiency by a factor of 2-3 in comparison with static scheduling.Comment: 31 pages, 14 figures, 6 tables, accepted for publication in MNRA

    Surface polar states and pyroelectricity in ferroelastics induced by flexo-roto field

    Full text link
    Theoretical analysis based on the Landau-Ginzburg-Devonshire (LGD) theory is used to show that the joint action of flexoelectric effect and rotostriction leads to a large spontaneous in-plane polarization (~ 1-5 muC/cm2) and pyroelectric coefficient (~10^-3 C/m2K) in the vicinity of surfaces of otherwise non-ferroelectric ferroelastics, such as SrTiO3, with static octahedral rotations. The origin of the improper polarization and pyroelectricity is an electric field we name flexo-roto field whose strength is proportional to the convolution of the flexoelectric and rotostriction tensors with octahedral tilts and their gradients. Flexo-roto field should exist at surfaces and interfaces in all structures with static octahedral rotations, and thus it can induce surface polar states and pyroelectricity in a large class of otherwise nonpolar materials.Comment: 16 pages, 3 figures, 1 table, supplementary material

    Impact of The Daily Mile on children's physical and mental health, and educational attainment in primary schools: iMprOVE cohort study protocol

    Get PDF
    INTRODUCTION: School-based active mile initiatives such as The Daily Mile (TDM) are widely promoted to address shortfalls in meeting physical activity recommendations. The iMprOVE Study aims to examine the impact of TDM on children's physical and mental health and educational attainment throughout primary school. METHODS AND ANALYSIS: iMprOVE is a longitudinal quasi-experimental cohort study. We will send a survey to all state-funded primary schools in Greater London to identify participation in TDM. The survey responses will be used for non-random allocation to either the intervention group (Daily Mile schools) or to the control group (non-Daily Mile schools). We aim to recruit 3533 year 1 children (aged 5-6 years) from 77 primary schools and follow them up annually until the end of their primary school years. Data collection taking place at baseline (children in school year 1) and each primary school year thereafter includes device-based measures of moderate-to-vigorous physical activity (MVPA) and questionnaires to measure mental health (Strengths and Difficulties Questionnaire) and educational attainment (ratings from 'below expected' to 'above expected levels'). The primary outcome is the mean change in MVPA minutes from baseline to year 6 during the school day among the intervention group compared with controls. We will use multilevel linear regression models adjusting for sociodemographic data and participation in TDM. The study is powered to detect a 10% (5.5 min) difference between the intervention and control group which would be considered clinically significant. ETHICS AND DISSEMINATION: Ethics has been approved from Imperial College Research Ethics Committee, reference 20IC6127. Key findings will be disseminated to the public through research networks, social, print and media broadcasts, community engagement opportunities and schools. We will work with policy-makers for direct application and impact of our findings

    Sociodemographic profiles, educational attainment and physical activity associated with The Daily Mileā„¢ registration in primary schools in England: a national cross-sectional linkage study

    Get PDF
    OBJECTIVE: To examine primary school and local authority characteristics associated with registration for The Daily Mile (TDM), an active mile initiative aimed at increasing physical activity in children. DESIGN: A cross-sectional linkage study using routinely collected data. SETTING: All state-funded primary schools in England from 2012 to 2018 (n=15,815). RESULTS: 3,502 of all 15,815 (22.1%) state-funded primary schools in England were registered to do TDM, ranging from 16% in the East Midlands region to 31% in Inner London. Primary schools registered for TDM had larger mean pupil numbers compared with schools that had not registered (300 vs 269, respectively). There was a higher proportion of TDM-registered schools in urban areas compared with non-urban areas. There was local authority variation in the likelihood of school registration (intraclass correlation coefficient: 0.094). After adjusting for school and local authority characteristics, schools located in a major urban conurbation (OR 1.46 (95% CI 1.24 to 1.71) urban vs rural) and schools with a higher proportion of disadvantaged pupils had higher odds of being registered for TDM (OR 1.16 (95% CI 1.02 to 1.33)). Area-based physical activity and schools' educational attainment were not significantly associated with registration to TDM. CONCLUSION: One in five primary schools in England has registered for TDM since 2012. TDM appears to be a wide-reaching school-based physical activity intervention that is reaching more disadvantaged primary school populations in urban areas where obesity prevalence is highest. TDM-registered schools include those with both high and low educational attainment and are in areas with high and low physical activity
    • ā€¦
    corecore