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Inferential Methods to Assess the Difference
in the Area Under the Curve From Nested

Binary Regression Models

Glenn Heller, Venkatraman E. Seshan, Chaya S. Moskowitz, and Mithat Gonen

Abstract

The area under the curve (AUC) is the most common statistical approach to eval-
uate the discriminatory power of a set of factors in a binary regression model. A
nested model framework is used to ascertain whether the AUC increases when
new factors enter the model. Two statistical tests are proposed for the difference
in the AUC parameters from these nested models. The asymptotic null distribu-
tions for the two test statistics are derived from the scenarios: (A) the difference in
the AUC parameters is zero and the new factors are not associated with the binary
outcome, (B) the difference in the AUC parameters is less than a strictly positive
value. A confidence interval for the difference in AUC parameters is developed.
Simulations are generated to determine the finite sample operating characteristics
of the tests and a pancreatic cancer data example is used to illustrate this approach.



Inferential Methods to Assess the Difference in the

Area Under the Curve From Nested Binary

Regression Models

Glenn Heller, Venkatraman E. Seshan, Chaya S. Moskowitz,

Mithat Gönen

Department of Epidemiology and Biostatistics

Memorial Sloan Kettering Cancer Center

485 Lexington Ave. New York, NY 10017

1

Hosted by The Berkeley Electronic Press



Abstract

The area under the curve (AUC) is the most common statistical approach to evaluate

the discriminatory power of a set of factors in a binary regression model. A nested

model framework is used to ascertain whether the AUC increases when new factors

enter the model. Two statistical tests are proposed for the difference in the AUC

parameters from these nested models. The asymptotic null distributions for the

two test statistics are derived from the scenarios: (A) the difference in the AUC

parameters is zero and the new factors are not associated with the binary outcome,

(B) the difference in the AUC parameters is less than a strictly positive value. A

confidence interval for the difference in AUC parameters is developed. Simulations

are generated to determine the finite sample operating characteristics of the tests and

a pancreatic cancer data example is used to illustrate this approach.

key words: Area under the receiver operating characteristic curve; Incremental

value; Maximum rank correlation; Nested models; Risk classification model
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1. Introduction

Receiver operating characteristic (ROC) curves and the areas under the ROC

curves (AUCs) are popular tools for assessing how well biomarkers and clinical risk

prediction models distinguish between patients with and without a health outcome

of interest. Historically, in cases where a new biomarker panel was developed and

interest lies in evaluating its ability to add information beyond that provided by

established risk factors, a two-step approach was taken. First, analysts would fit a

regression model containing both the established factors and the new biomarkers and

test whether the association between the outcome and new markers was statistically

significant. Secondly, the linear predictor function from this model would be used to

construct an AUC. This AUC would be compared to the AUC from a model containing

only the established risk factors. This comparison typically involved testing whether

the difference in the two AUCs was statistically significantly different from zero.

Recent work has pointed out that this approach is problematic for at least two

reasons. First, when evaluating incremental value as we have described, the AUCs

arise from nested regression models. The current convention is to test the difference in

the AUCs with the DeLong test (DeLong, DeLong, and Clarke-Pearson 1988). In the

context of AUCs that are derived from nested regression models, Seshan, Gönen, and

Begg (2013) and Vickers, Cronin, and Begg (2011) have illustrated through simulation

that the distributional assumptions of the DeLong test are violated resulting in a

biased test statistic. Second, Pepe et al. (2013) demonstrate that the null hypothesis

of no association between the new biomarkers and the outcome when established risk

factors are included in the model is equivalent to the null hypothesis that the AUCs
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from the two models are equal, and consequently, testing both is superfluous. The

conclusions from these papers all coalesce to the same recommendation: when testing

for whether a new set of biomarkers add any incremental value, only one statistical

test should be done and the preferable one is a test of whether the regression coefficient

from a binary regression model is significantly different from zero. This can be done

with either a Wald, score, or likelihood ratio test.

These parametric association test statistics are more sensitive than the nonpara-

metric difference in AUC statistic. Specifically, high odds ratios and small p-values

corresponding to new markers in a classification model can produce only modest in-

crements in the observed difference in AUCs. Such seemingly incongruous results

may lead to dissonance when explaining the results to a collaborator not sufficiently

versed in statistical inference. As Pepe et al. (2013) emphasize, the equivalence of

two null hypotheses does not imply that the two corresponding statistical tests are

the same. If the AUCs from the nested models are the primary focus of the study,

then a direct method for testing this difference would provide a coherent analysis.

The first part of this work derives a test of equality based on the difference in AUCs

from nested models.

The second part of this work derives the distribution theory needed to accurately

apply hypothesis testing and confidence interval construction for a nonzero difference

in population AUCs. Rigorous evaluation of a new biomarker panel, particularly

in a prospective study, necessitates that some thought be given to the minimally

acceptable degree of incremental value provided by the panel. A decision as to whether

the biomarkers are clinically useful need not be based on a statistical test of whether

there is evidence of any incremental value, but on whether the magnitude of additional
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information is sufficiently large to consider the biomarker panel promising and either

worthy to study further or to recommend for use in practice. While both Pepe et

al. (2013) and Seshan, Gönen, and Begg (2013) emphasize this point, neither they,

nor anyone else as far as we are aware, offer guidance on how to formally test for a

minimally acceptable degree of incremental value.

Although alternative model performance metrics have their merits, the AUC still

remains one of the most often used measures of medical test performance. It is

ubiquitous in clinical, bioinformatic, and radiology journals, and many researchers

are familiar with it. Having a way to test for a minimal change in AUCs could thus

be useful in multiple contexts. Furthermore, this familiarity may facilitate clinicians

abilities to judge what constitutes a clinically meaningful difference. In addition to

the development of a test under a non-zero null, the methodology developed enables

an asymptotic confidence interval for the difference in the population AUCs; a useful

inferential approach that we could not find in the literature.

2. The Difference in AUCs with Nested Models

A generalized binary regression model

Pr(Y = 1|X) = G(βT
0X)

is used create risk scores βTX that predict a binary classifier Y , with outcomes

referred to as response (Y = 1) and nonresponse (Y = 0). In this model, the monotone

link function G is unknown, making the parameter vector β identifiable up to a scale

factor. To establish scale normalization, the first parameter component is set equal

to 1 and is expressed as β = (1,ηT )T .
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The model based performance in terms of classification is evaluated using the area

under the receiver operating characteristic curve (AUC). The area under the curve is

defined as

Pr(βTX1 > β
TX2|Y1 = 1, Y2 = 0),

which represents the probability that a responder’s risk score is greater than a non-

responder’s risk score.

Often a new set of markers are under consideration to improve risk classification.

A direct approach for this assessment is to test whether the new risk factors in tandem

with existing markers increase the area under the curve relative to the AUC derived

solely from the established factors. This evaluation is based on the difference in AUCs

from the nested models

Pr(Y = 1|X,Z) = G(βT
0X + γT

0Z)

Pr(Y = 1|X) = G(β0TX),

where the existing markers are denoted by the p-dimensional covariate vector X

and the new markers are represented by the q-dimensional covariate vector Z. The

estimated area under the curve for the nested models are:

Ãn(β̂, γ̂) = (n0n1)
−1
∑
i

∑
j

I[yi > yj]I[β̂
T
xij + γ̂Tzij > 0]

Ãn(β̂0, 0) = (n0n1)
−1
∑
i

∑
j

I[yi > yj]I[β̂0
T

xij > 0]

where the notation xij is used to represent the pairwise difference xi − xj and nk =∑
i I[yi = k]. Note that due to the identifiability constraint, β̂ = (1, η̂T )T , β̂

0
=
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(1, η̂0
T

)T and the corresponding parameters are denoted by β0 = (1,ηT
0 )T , β0 =

(1,η0T )T .

The parameter estimates from these nested models are computed using the max-

imum rank correlation (MRC) procedure (Han 1987). The MRC is a rank based

estimation procedure that maximizes the AUC. For the full model, the MRC esti-

mates (β̂, γ̂) are computed as

arg max
(η,γ)

(n0n1)
−1
∑
i

∑
j

I[yi > yj]I[βTxi + γTzi > β
Txj + γTzj].

Sherman (1993) demonstrated that (η̂, γ̂) and η̂0 are asymptotically normal and are

consistent estimates of (η0,γ0) and η0.

3. Hypothesis Testing

To test the hypothesis that the new markers improve the AUC, we denote the

limiting values of the estimated AUC from the reduced model and full model as

α(β0, 0) and α(β0,γ0), respectively. Han (1987) demonstrates that these limiting

forms represent the maximum population AUCs when the markers are combined

linearly.

The hypothesis test may be characterized as

H0 : α(β0,γ0)− α(β0, 0) ≤ δ

Ha : α(β0,γ0)− α(β0, 0) > δ

A standard approach to derive a testing procedure is to find an asymptotic ref-

erence distribution for the difference in nested AUCs via a Taylor series expansion

around the true parameter vectors. This expansion, however, requires differentiation

with respect to the parameters (η,γ), which is problematic due to the discontinuity

7
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induced by the indicator function in the AUC statistic. As a result, the expansions

utilized in this paper use a smooth version of Ãn based on the asymptotic approxi-

mation

I[βTxij + γTzij > 0] ≈ Φ

(
βTxij + γTzij

hn

)
where Φ is the standard normal distribution function and hn is a bandwidth that goes

to 0 as the sample size n gets large (Horowitz 1992). The smoothed empirical AUCs

are written as

An(β̂, γ̂) = (n0n1)
−1
∑
i

∑
j

I[yi > yj]Φ

(
β̂

T
xij + γ̂Tzij

hn

)

An(β̂0, 0) = (n0n1)
−1
∑
i

∑
j

I[yi > yj]Φ

 β̂0
T

xij

hn

 .

Ma and Huang (2007) demonstrate the asymptotic normality of the parameter esti-

mates from the smoothed AUC and the uniform consistency of the smoothed AUCs

to the maximum population AUCs. As a result, the smoothed versions of the MRC

based AUC estimates are used to derive the null asymptotic reference distribution.

To determine the distribution of the test statistic, there are two null scenarios for

the threshold that are considered separately

A : δ = 0, γ0 = 0 (β0 = β0)

B : δ > 0, γ0 6= 0

For the null in scenario A, the set of new factors are not associated with the response,

and as a result, the limiting AUCs are equal (Pepe et al. 2013). For the null hypothesis

in scenario B, the new factors are associated with response, but the difference in the

limiting AUCs is not larger than an apriori determined value (δ).
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3.1. Scenario A: δ = 0, γ0 = 0 (β0 = β0)

The most common approach for testing scenario A is to apply the asymptotic

normal U-statistic theory to the studentized difference in empirical AUCs (Delong,

DeLong, and Clarke-Pearson 1988). As shown below, root-n normality is not the

correct null reference distribution for the difference in AUCs from nested models.

Seshan, Gönen, and Begg (2013) recognized the inaccuracy of the normal reference

distribution and developed a resampling approach to attain an approximate distri-

bution for the difference in nested AUCs. They illustrated that the estimated risk

scores, derived from a logistic regression model, oriented the difference in AUCs in

a positive direction. In addition, they noted that the variance-covariance matrix for

the AUCs under the null is singular, further distorting this application. They ad-

dressed these issues by constructing a projection-permuation reference distribution

and demonstrated its operating characteristics through simulation.

We reexamine the asymptotic null distribution theory. The theorem below pro-

vides the distribution for the difference in nested AUCs when the new factors are not

associated with response. The proof of this theorem is found in the appendix.

Theorem 1: The difference in nested AUCs under scenario A may be asymptotically

represented as

2n[An(β̂, γ̂)− An(β̂0, 0)] =

q∑
j=1

λjχ
2
j + op(1),

where {χ2
j} are independent chi-square random variables each with one degree of

freedom, {λj} are the eigenvalues of the product matrix −Vγ [Dγγ ]−1, where both V

and D are derived from the full model, Vγ is the asymptotic variance of the MRC

9
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estimate γ̂, D is the second derivative matrix of An, and its partitioned form along

with its inverse are represented as

D =

 Dηη Dηγ

Dγη Dγγ

 D−1 =

 Dηη Dηγ

Dγη Dγγ



Comment 1: Although the distribution of a weighted sum of independent chi-

square random variables does not have a closed form, the distribution can be approx-

imated by generating q independent squared standard normal random variables {Z2
j },

computing the linear combination
∑
λjZ

2
j , and repeating a large number of times.

Comment 2: Vuong (1989) and Fine (2002) present this distributional result for

the likelihood ratio statistic from mispecified nested (semi)parametric models. Fur-

ther, the result is a generalization of the asymptotic distribution theory for the like-

lihood ratio statistic. If An(β̂, γ̂) and An(β̂
0
, 0) were replaced by the loglikelihoods

from the full and constrained parametric regression models, then D is the negative

information matrix and from standard likelihood theory [−Dγγ ]−1 approximates Vγ .

It follows that the q eigenvalues of −Vγ [Dγγ ]−1 are each equal to 1, and the result

reduces to
∑q

j=1 χ
2
j + op(1); the standard result that the likelihood ratio test statistic

is a chi-square with q degrees of freedom.

Comment 3: Seshan, Gönen, and Begg (2013) used maximum likelihood from a

logistic model to estimate the regression coefficients for the AUC calculations. Their

results indicated that a nontrivial percentage of the simulations produced a negative

difference in the nested AUCs, which was difficult to interpret. The MRC coefficient

estimates, derived through maximization of the AUCs from the constrained and un-

constrained models, result in a non-negative difference in AUCs up to the limitations
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of the algorithmic maximization search.

Comment 4: The first derivative of the AUC, when evaluated at the MRC pa-

rameter estimate, is equal to zero. As a result, the quadratic is the lowest order

nonzero term in the asymptotic expansion of the difference in AUCs. This simplifies

the derivation of the null asymptotic distribution.

3.2. Scenario B: δ > 0, γ0 6= 0

We obtain the asymptotic distribution under a null that indicates that a new set

of factors are associated with response after controlling for the established risk fac-

tors, but the parameter AUCs in the nested models do not differ by more than δ. In

deciding what constitutes a relevant increase in the model AUC, the analyst will often

follow practical and empirical considerations that depend upon the particular appli-

cation. As has been noted previously, putting the AUC increase in a clinical context

has been challenging, but experience with this measure has enabled investigators to

gauge improvement (Kerr, Bansal, and Pepe 2012). Less well appreciated is that the

magnitude of the improvement is a function of the baseline model AUC. This point

was made by Pencina et al. (2012), and suggests that a calibrated determination, as

a function of the baseline model AUC, be used for testing an improvement in nested

AUCs. For example, a large δ may be useful when testing for an improvement over a

relatively weak baseline model AUC, whereas a small δ may be justified when testing

for an improvement over a stronger baseline model AUC.

The theorem below provides the asymptotic distributional framework for hypoth-

esis testing and confidence interval estimation for δ.

11
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Theorem 2: The difference in nested AUCs under scenario B may be asymptotically

represented as

n1/2[An(β̂, γ̂)− An(β̂
0
, 0)− δ] =

n1/2

[
(n0n1)

−1
∑
i

∑
j

I[yi > yj]

{
Φ

(
βT

0 xij + γT
0 zij

hn

)
− Φ

(
β0Txij

hn

)
− δ

}]
+op(1)

The asymptotic expression is simply the zero order term in the asymptotic expan-

sion. This asymptotic approximation is a two-sample U-statistic of degree 2 with no

estimated parameters. It follows from U-statistic theory that under the δ null, the

difference in AUCs is asymptotically normal with mean 0. The variance estimate from

this U-statistic is provided in the appendix. Interestingly, the studentized statistic is

the DeLong statistic. In contrast, as shown in the previous section, the asymptotic

normal distribution is incorrectly applied to the DeLong statistic under scenario A.

The simulation results in Section 5 demonstrate that for a sample size as large

as 500, this asymptotic normal test is conservative under scenario B. An explanation

for this lack of accuracy is illustrated in Figure 1a, which is a plot of the difference

in the AUCs [δ̂ = An(β̂, γ̂) − An(β̂
0
, 0)] and its estimated asymptotic variance [V̂ ] .

The points are the realizations of a simulation where δ = 0.01, the baseline AUC is

0.70, and the sample size within each replication is 500. The graph indicates a linear

relationship between the estimate and its variance. To remove this mean-variance

relationship, an Anscombe variance stabilizing reparameterization g(δ) =
√
δ + 3

8n

is used to provide greater accuracy for the normal approximation. The transformed

estimate for testing the difference in AUCs and its estimated asymptotic variance are

τ̂ =

√
δ̂ +

3

8n
v̂ar(τ̂) =

V̂

4(δ̂ + 3
8n

)
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Stemming from comment 3 in Section 3, estimating the regression parameters by

maximizing the AUCs in the reduced and full models, leads to a nonnegative δ̂, and

removes a barrier to applying the square root transformation. Figure 1b depicts the

variance stabilization after the Anscombe transformation was applied.

4. Confidence Intervals

In addition to providing more accurate level tests, the normalizing transformation

enables the construction of a confidence interval for the difference in the AUC pa-

rameters, δ = α(β0,γ0)−α(β0, 0). The 95% confidence interval is obtained by using

the variance stabilizing transformation τ =
√
δ + 3

8n
and selecting the set of values

not in the critical region of the asymptotic normal test{
τ :

∣∣∣∣∣ τ̂ − τ√
var(τ̂)

∣∣∣∣∣ < 1.96

}
A back transformation of the upper and lower 95% confidence limits for τ leads to an

asymptotic confidence interval for δ.

Pr

[{
τ̂ − 1.96

√
var(τ̂)

}2

− 3

8n
< δ <

{
τ̂ + 1.96

√
var(τ̂)

}2

− 3

8n

]
≈ 0.95.

5. Simulations

A simulation study is performed to examine the validity the proposed test. A

bivariate normal equal correlation model with correlation parameters {0, 0.5} and

Pr(Y = 1) = 0.5 were used to generate the simulation data. Five hundred observa-

tions per replicate and and 5000 replicates were run for each simulation. The range

of population AUCs examined was (0.55− 0.85).
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The choice of bandwidth used for smoothing the AUC is flexible, since the only

asymptotic constraint is that it goes to zero as the sample size gets large. For scenario

A, the second derivative matrix D, derived from the smoothed AUC, is a function of

the normal density φ. Guidance from kernel density estimation led to the bandwidth

hn = ω̂n−1/5, where ω2 is the variance of βTx+γTz. For scenario B, the test statistic

is based on the normal distribution function Φ, but none of its derivatives. Since the

stability of its derivative φ does not play a role, a tighter bandwidth hn = ω̂n−1/2 was

chosen for these simulations.

Scenario A size and power calculations are presented in Tables 1 and 2. For

Table 1, the new factors are not associated with response (γ0 = 0) and in Table 2,

the difference δ varies with the underlying baseline population AUC. Scenario B size

results, with the null difference in AUC parameters equal to δ, are given in Table 3.

For scenario A, the asymptotic reference distribution, based on a linear combi-

nation of chi-square random variables, results in an accurate size test except when

the AUC is near the 0.50 boundary. The results in Table 1 also confirm the validity

of the Wald test under this scenario. The power results in Table 2 illustrate that

the parametric Wald test is more sensitive than the nonparametric difference in AUC

test, but that the difference in power is not substantial.

The size results for scenario B are displayed in Table 3. The difference in AUCs

test (DIFF), based on the studentized asymptotic normal test, is conservative, but

improving as δ increases. To remove the mean-variance relationship in the studentized

test, the variance stabilizing transform is applied and it is verified that the variance

stabilized difference in AUCs (DIFFvst) does generate a valid test, but has increasing

size as the AUC gets closer to the 0.50 boundary. The Wald test is inappropriate in
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this scenario.

6. Application to pancreatic cancer

Intraductal papillary mucinous neoplasms (IPMN) are cystic lesions of the pan-

creas and present with difficult treatment decisions. Surgical removal is difficult and

morbid. It is essential if the lesions are high-risk (defined as malignant or high-grade)

but also a potential for harm to the patient for low-risk lesions (low-grade or benign).

Unfortunately lesion risk (malignancy and grade) can only be evaluated pathologi-

cally, leaving the clinician to use alternative clinical markers of risk such as main duct

involvement. It is widely accepted that lesions involving the main pancreatic duct are

at higher risk of being malignant and current guidelines of the International Associ-

ation of Pancreatology recommend resection of all main-duct lesions (Tanaka et al.

2012). Using the data which supported these guidelines one can infer that 40 percent

of patients with main duct IPMN will undergo resection to remove low-risk lesions.

Therefore the search for markers that improve our ability to select patients for resec-

tion continues. Lesion size and presence of a solid component on imaging are recently

reported to be predictors of high-risk lesions (Correa-Gallego et al. 2013) although

they are not yet incorporated into the international gudielines. In this analysis we

evaluate whether a novel marker, recent weight loss, provides incremental improve-

ment in risk classification, when used in conjunction with main duct involvement,

lesion size and the presence of a solid component in imaging.

Two hundred and six patients at Memorial Sloan Kettering who were candidates

for surgical removal of IPMNs were evaluated. The Wald statistic, derived from a

15
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logistic regression analysis, indicated that recent weight loss is positively associated

with high vs. low risk lesions (p = 0.007) in the presence of a solid component on

imaging, main duct involvement, and lesions size. The maximum rank correlation

AUC estimates from models without and with the weight loss factor were 0.794 and

0.809, respectively. Thus, although the Wald statistic indicates that weight loss is

associated with resection, it is unclear whether its inclusion is sufficiently helpful in

terms of risk classification.

We examined the importance of weight loss, first in scenario A, confirming the

logistic analysis that weight loss is associated with high-risk lesions. The observed

difference in model AUCs was 0.015 and the test that the added factor increased the

population AUC generated a p-value equal to 0.007. Given that the population AUCs

from the nested models have a non-zero difference, we next examined scenario B and

tested whether this difference was greater than 0.01. We choose 0.01 because both

lesion size and the presence of a solid component on imaging displayed improvement

over main duct involvement by more than 0.01 on the AUC scale. The results using

the variance stabilizing transformation, generated a studentized test statistic that

resulted in a p-value equal to 0.652, indicating that adding recent weight loss to

the existing factors did not improve surgical risk classification via the AUC metric

by more than 0.01. The 95% confidence interval for the difference in AUCs was

(−0.001, 0.053). Thus, weight loss does not provide sufficient additional information

for incorporation into the current surgical risk classification algorithm.

7. Discussion
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The complexity of human disease and response to treatment can only be captured

by the use of multiple clinical features and biomarkers. While most clinical features

that are in use for predictive purposes are well-established, new biomarkers (includ-

ing genomic and proteomic ones) are rapidly being introduced into clinical research.

These novel markers are useful to the extent that they improve our ability to prog-

nosticate and predict response to therapy over and beyond what we can currently

do using clinical features and established biomarkers. This requires the development

of a statistical model that includes both established and novel markers, and using

this model to test the added predictive value of the novel components. This is typi-

cally done comparing the AUCs from the full (the model containing all variables) and

reduced (the model excluding the novel variables) resulting in nested models.

The current recommendation to establish an increase in the AUC for nested models

is to perform a likelihood ratio or Wald test on the additional factors. While this

is a valid test it does not directly address the aim of the AUC analysis. The direct

method is to measure the difference in AUCs from the nested models. This approach

is analogous to using the F statistic for prediction in linear regression rather than the

likelihood ratio test to examine the predictive importance of a subset of factors. In this

article we provide the asymptotic theory nececesary for the statistical comparison of

two AUCs resulting from nested models. In addition we provide a method to construct

an asymptotically valid confidence interval for the difference in AUCs filling another

gap in the methodology.

As prediction becomes more important in medical research and practice, met-

rics other than AUC have been introduced (Pencina et al. 2008). It is noted that

the methodological framework, including the smoothing approximation for indicator

17
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functions and the distribution theory for nested models, is sufficiently general to be

applied to assess the added value of new markers to other measures of discrimination,

such as: sensitivity, specificity, net benefit, net reclassification improvement, and in-

tegrated discriminant improvement. The application of the proposed methodology to

these statistics will be explored in future work.
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Table 1: Size simulations for scenario A (γ0 = 0)

AUCf AUCr ρ LCCS WALD ρ LCCS WALD

0.55 0.55 0 0.1040 0.0428 0.5 0.1056 0.0450

0.60 0.60 0 0.0504 0.0602 0.5 0.0506 0.0612

0.65 0.65 0 0.0454 0.0500 0.5 0.0460 0.0512

0.70 0.70 0 0.0500 0.0526 0.5 0.0500 0.0516

0.75 0.75 0 0.0460 0.0456 0.5 0.0460 0.0456

0.80 0.80 0 0.0474 0.0482 0.5 0.0472 0.0478

0.85 0.85 0 0.0554 0.0490 0.5 0.0554 0.0500

Table 2: Power simulations for scenario A (γ0 6= 0, δ = {0.005, 0.01, 0.02})
δ AUCr ρ LCCS WALD ρ LCCS WALD

0.02 0.55 0 0.3674 0.5140 0.5 0.3528 0.4992

0.02 0.60 0 0.6434 0.7428 0.5 0.6536 0.7500

0.01 0.65 0 0.5600 0.6182 0.5 0.5634 0.6224

0.01 0.70 0 0.6914 0.7318 0.5 0.6838 0.7234

0.01 0.75 0 0.8142 0.8398 0.5 0.8210 0.8446

0.005 0.80 0 0.6302 0.6486 0.5 0.6416 0.6584

0.005 0.85 0 0.7590 0.7566 0.5 0.7594 0.7580

AUCf = Area under the curve for full model with covariates (X,Z)

AUCr = Area under the curve for reduced model with covariate X

δ = AUCf - AUCr

ρ = Correlation between the covariates (X,Z)

LCCS = linear combination of chi-square random variables

Wald = Wald statistic
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Table 3: Size simulation results for scenario B (γ0 6= 0, δ = {0.005, 0.01, 0.02})
δ AUCr ρ DIFF DIFFvst WALD ρ DIFF DIFFvst WALD

0.02 0.55 0 0.0378 0.0864 0.5280 0.5 0.0350 0.0776 0.4876

0.02 0.60 0 0.0286 0.0668 0.7428 0.5 0.0300 0.0670 0.7600

0.01 0.65 0 0.0238 0.0620 0.6182 0.5 0.0196 0.0582 0.6216

0.01 0.70 0 0.0230 0.0568 0.7318 0.5 0.0210 0.0558 0.7392

0.01 0.75 0 0.0238 0.0538 0.8398 0.5 0.0218 0.0524 0.8478

0.005 0.80 0 0.0168 0.0502 0.6486 0.5 0.0162 0.0472 0.6530

0.005 0.85 0 0.0220 0.0534 0.7566 0.5 0.0192 0.0522 0.7614

AUCf = Area under the curve for full model with covariates (X,Z)

AUCr = Area under the curve for reduced model with covariate X

δ = AUCf - AUCr

ρ = Correlation between the covariates (X,Z)

DIFF = Difference in AUC test

DIFFvst = Difference in AUC test with variance stabilizing transformation

Wald = Wald statistic
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Appendix

The following notation and regularity conditions are used in this appendix.

Notation:

βT = (1, η1, . . . , ηp−1), γT = (γ1, . . . , γq), θ = (ηT ,γT )T

An(θ) = (n0n1)
−1
∑
i

∑
j

I[yi > yj]Φ

(
βTxij + γTzij

hn

)

The second derivative matrix of An(θ) and its inverse are partitioned as

D(θ) =

 Dηη Dηγ

Dγη Dγγ

 D−1(θ) =

 Dηη Dηγ

Dγη Dγγ

 where Dηγ =
∂2An(θ)

∂η∂γ

Regularity conditions:

1. θ ∈ Θ a compact subspace of Rp−1+q.

2. The domain of (x, z) is not contained in a linear subspace of Rp+q.

3. The density of x1 conditional on all other covariates is everywhere positive.

The null asymptotic distribution of the difference in AUCs: Scenario A

A three term expansion of An(θ0) around θ̂ = (η̂, γ̂) is,

An(θ̂)−
{
An(θ̂) + 0 +

1

2
(θ0 − θ̂)TD(θ̂)(θ0 − θ̂)

}
,

where the first order term is zero since θ̂ is obtained through maximization of An(θ).
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A similar argument produces a three term expansion of An(θ0) around θ̂0 = (η̂0, 0),

An(θ̂0)−
{
An(θ̂0) + 0 +

1

2
(η0 − η̂0)TDηη(θ̂

0
)(η0 − η̂0)

}
.

Therefore, the test statistic 2n[An(θ̂)− An(θ̂
0
)] is asymptotically approximated by

n(θ0 − θ̂)T
[
−D(θ̂)

]
(θ0 − θ̂)− n(η0 − η̂0)T

[
−Dηη(θ̂

0
)
]

(η0 − η̂0) + op(1).

Further simplification may be achieved by relating the unrestricted and the restricted

estimates η̂ and η̂0 under the null (Cox and Hinkley 1974),

(η0 − η̂0) = (η0 − η̂) +D−1ηη(θ̂
0
)Dηγ(θ̂

0
)(γ0 − γ̂) + op(n

−1/2).

Thus, the test statistic under the null may be asymptotically approximated by

2n[An(θ̂)− An(θ̂0)] = n(γ0 − γ̂)T [−Dγγ(θ̂)]−1(γ0 − γ̂) + op(1).

The quadratic on the right hand side is asymptotically a weighted sum of independent

chi-square random variables, each with one degree of freedom (Johnson and Kotz

1970).

Therefore under scenario A, a test for the difference in nested AUCs may be based

on the null reference distribution

2n[An(θ̂)− An(θ̂0)] ≈
q∑

j=1

λjχ
2
j .

where {λj} are the eigenvalues of the product matrix −Vγ [Dγγ ]−1 and Vγ is the

asymptotic variance of γ̂.

22

http://biostats.bepress.com/mskccbiostat/paper30



The null asymptotic distribution of the difference in AUCs: Scenario B

The test statistic and its asymptotic distribution are derived under a null that indi-

cates that the new set of factors are associated with response, but the AUCs do not

differ by more than δ.

Consider the first order asymptotic approximation

n1/2[An(θ̂)− An(θ̂
0
)− δ] = n1/2[An(θ0)− An(θ0)− δ]+[

∂An(θ)

∂θ

∣∣∣∣
θ=θ̂

]T
n1/2(θ̂ − θ0)−

[
∂An(η, 0)

∂η

∣∣∣∣
η=η̂0

]T
n1/2(η̂0 − η0) + op(1).

Again, since θ̂ and η̂0 maximize their respective smooth AUCs,

and it follows that

n1/2[An(θ̂)− An(θ̂
0
)− δ] = n1/2[An(θ0)− An(θ0)− δ] + op(1).

Therefore,

n1/2[An(θ0)− An(θ0)− δ] =

n1/2

[
(n0n1)

−1
∑
i

∑
j

I[yi > yj]

{
Φ

(
βT

0 xij + γT
0 zij

hn

)
− Φ

(
β0Txij

hn

)
− δ

}]
is a two-sample U-statistic of degree 2 (with no estimated parameters) and a test for

the difference in nested AUCs under scenario B is based on a normal mean 0 null

reference distribution. The variance from this U-statistic is

V =
n

n0

σ2
1 +

n

n1

σ2
2,

which may be estimated with the following components

σ̂2
1 = [n0n1(n0 − 1)]−1

n∑
i=1

n∑
j=1

n∑
k=1,k 6=j

I[yi = 1]I[yj = 0]I[yk = 0](eij − δ)(eik − δ)
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σ̂2
2 = [n0n1(n1 − 1)]−1

n∑
i=1

n∑
j=1

n∑
k=1,k 6=j

I[yi = 1]I[yj = 0]I[yk = 1](eij − δ)(ekj − δ)

and eij = Φ

[
β̂

T
xij + γ̂Tzij

hn
> 0

]
− Φ

 β̂0
T

xij

hn
> 0

 .
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Figure 1a
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Figure 1b
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