6 research outputs found

    Improvement of bone microarchitecture in methylprednisolone induced rat model of osteoporosis by using thiolated chitosan-based risedronate mucoadhesive film

    No full text
    Objective: In this study, we investigated the potential of thiolated chitosan-based mucoadhesive film, loaded with risedronate sodium in the treatment of osteoporosis. Significance: Risedronate sodium is a bisphosphonate derivative having very low bioavailability when administered through the oral route. Moreover, the adverse effects associated with the drug when administered through GIT necessitate an alternative and feasible route which can improve its bioavailability and therapeutic efficacy. Methods: Thiolation of chitosan was interpreted by different analytical techniques. The mucoadhesive films were prepared by the solvent evaporation method and evaluated for drug content analysis, swelling degree, mucoadhesive parameters, and permeation characterization. For the screening of preclinical efficacy and pharmacodynamic parameters, a methylprednisolone induced osteoporotic rat model was used. The trabecular microarchitecture and biochemical markers were evaluated for determination of bone resorption. Results: The different analytical characterization of synthesized thiolated chitosan revealed that chitosan was successfully incorporated with thiol groups. The formulation containing 2:1 ratio of thiolated chitosan and HPMC-4KM was found to have the maximum swelling degree, mucoadhesive strength with a good force of adhesion and better in vitro permeability compared to the marketed formulation. With respect to trabecular microarchitecture, the drug-loaded film formulation showed superior and promising results. Furthermore, the film formulation also improved the serum level of biomarkers better than the marketed formulation. Conclusions: The results significantly suggest that risedronate loaded novel mucoadhesive film formulation could be a logical approach in the therapeutic intervention of osteoporosis

    Multifunctional Glycoconjugate Assisted Nanocrystalline Drug Delivery for Tumor Targeting and Permeabilization of Lysosomal-Mitochondrial Membrane

    No full text
    Nanotechnology has emerged as the most successful strategy for targeting drug payloads to tumors with the potential to overcome the problems of low concentration at the target site, nonspecific distribution, and untoward toxicities. Here, we synthesized a novel polymeric conjugate comprising chondroitin sulfate A and polyethylene glycol using carbodiimide chemistry. We further employed this glycoconjugate possessing the propensity to provide stability, stealth effects, and tumor targeting via CD44 receptors, all in one, to develop a nanocrystalline system of docetaxel (DTX@CSA-NCs) with size < 200 nm, negative zeta potential, and 98% drug content. Taking advantage of the enhanced permeability and retention effect coupled with receptor mediated endocytosis, the DTX@CSA-NCs cross the peripheral tumor barrier and penetrate deeper into the cells of tumor mass. In MDA-MB-231 cells, this enhanced cellular uptake was observed to exhibit a higher degree of cytotoxicity and arrest in the G2 phase in a time dependent fashion. Acting via a mitochondrial-lysosomotropic pathway, DTX@CSA-NCs disrupted the membrane potential and integrity and outperformed the clinically used formulation. Upon intravenous administration, the DTX@CSA-NCs showed better pharmacokinetic profile and excellent 4T1 induced tumor inhibition with significantly less off target toxicity. Thus, this glycoconjugate stabilized nanocrystalline formulation has the potential to take nano-oncology a step forward

    Development of docetaxel nanocapsules for improving <i>in vitro</i> cytotoxicity and cellular uptake in MCF-7 cells

    No full text
    <p>The aim of this study was to fabricate docetaxel loaded nanocapsules (DTX-NCs) with a high payload using Layer-by-Layer (LbL) technique by successive coating with alternate layers of oppositely charged polyelectrolytes. Developed nanocapsules (NCs) were characterized in terms of morphology, particle size distribution, zeta potential (ζ-potential), entrapment efficiency and <i>in vitro</i> release. The morphological characteristics of the NCs were assessed using transmission electron microscopy (TEM) that revealed coating of polyelectrolytes around the surface of particles. The developed NCs successfully attained a submicron particle size while the ζ-potential of optimized NCs alternated between (+) 34.64 ± 1.5 mV to (−) 33.25 ± 2.1 mV with each coating step. The non-hemolytic potential of the NCs indicated the suitability of the developed formulation for intravenous administration. A comparative study indicated that the cytotoxicity of positively charged NCs (F4) was significant higher (<i>p</i> < 0.05) rather than negative charged NCs (F3), plain drug (DTX) and marketed preparation (Taxotere®) when evaluated <i>in vitro</i> on MCF-7 cells. Furthermore, cell uptake studies evidenced a higher uptake of positive NCs (≥1.2 fold) in comparison to negative NCs. In conclusion, formulated NCs are an ideal vehicle for passive targeting of drugs to tumor cells that may result in improved efficacy and reduced toxicity of encapsulated drug moiety.</p
    corecore