67 research outputs found

    Practical use of dabigatran etexilate for stroke prevention in atrial fibrillation.

    Get PDF
    Atrial fibrillation (AF) is associated with an increased risk of thromboembolism, and is the most prevalent factor for cardioembolic stroke. Vitamin K antagonists (VKAs) have been the standard of care for stroke prevention in patients with AF since the early 1990s. They are very effective for the prevention of cardioembolic stroke, but are limited by factors such as drug-drug interactions, food interactions, slow onset and offset of action, haemorrhage and need for routine anticoagulation monitoring to maintain a therapeutic international normalised ratio (INR). Multiple new oral anticoagulants have been developed as potential replacements for VKAs for stroke prevention in AF. Most are small synthetic molecules that target thrombin (e.g. dabigatran etexilate) or factor Xa (e.g. rivaroxaban, apixaban, edoxaban, betrixaban, YM150). These drugs have predictable pharmacokinetics that allow fixed dosing without routine laboratory monitoring. Dabigatran etexilate, the first of these new oral anticoagulants to be approved by the United States Food and Drug Administration and the European Medicines Agency for stroke prevention in patients with non-valvular AF, represents an effective and safe alternative to VKAs. Under the auspices of the Regional Anticoagulation Working Group, a multidisciplinary group of experts in thrombosis and haemostasis from Central and Eastern Europe, an expert panel with expertise in AF convened to discuss practical, clinically important issues related to the long-term use of dabigatran for stroke prevention in non-valvular AF. The practical information reviewed in this article will help clinicians make appropriate use of this new therapeutic option in daily clinical practice

    Inhibition of a vascular ocular tumor growth by IL-12 gene transfer.

    No full text
    Ocular tumors such as retinoblastoma and uveal melanoma have devastating effects on vision. Patients with uveal melanoma also have low 5-year survival rates, thus new therapeutic modalities are necessary. As both retinoblastoma and uveal melanoma are highly vascular, we tested application of a gene transduction approach with a potent TH1 cytokine also endowed with strong anti-angiogenic activity, Interleukin-12 (IL-12). Gene transfer into murine 99E1 uveal melanoma-like cells, while having no effects on growth in vitro, essentially blocked subcutaneous tumor growth in vivo without evident signs of toxicity. Orthotopic intraocular injection resulted in invasive tumors that destroyed ocular architecture by the control cells while the IL-12 transduced cells rarely formed tumors. Histological analysis revealed highly invasive and angiogenic tumor growth in the controls and poorly vascularized tumors in the presence of IL-12. The tumor repression effect could be reproduced by a systemic anti-angiogenic effect, where controlateral injection of IL-12 expressing cells strongly repressed growth in tumors formed by parental 99E1 cells. This was associated with significantly lowered tumor vessel densities, a trend toward lower VEGF levels in the lesion, and significantly decreased NK cells in the parental tumors exposed to systemic IL-12. Taken together, our data suggest that IL-12 gene transfer can provide anti-angiogenic effects without toxicity and may be particularly suited for therapy of vascularized ocular tumors

    Pathogen-Induced Interleukin-1 beta Processing and Secretion Is Regulated by a Biphasic Redox Response

    No full text
    In this study, we show that IL-1 beta processing and secretion induced by pathogen-associated molecular pattern (PAMP) molecules in human monocytes is regulated by a biphasic redox event including a prompt oxidative stress and a delayed antioxidant response. Namely, PAMPs induce an early generation of reactive oxygen species (ROS) followed by increase of intracellular thioredoxin and release of reduced cysteine: this antioxidant phase is paralleled by secretion of mature IL-1 beta. ROS production and antioxidant response are both required, because either inhibitors of NADPH oxidase and of thioredoxin reductase impair IL-1 beta secretion. These inhibitors also hinder cysteine release and consequently prevent reduction of the extracellular medium: addition of exogenous reducing agents restores IL-1 beta secretion. Not only silencing of thioredoxin, but also of the ROS scavenger superoxide dismutase 1 results in inhibition of IL-1 beta secretion. Thus, PAMP-induced ROS trigger an antioxidant response involving intracellular redox enzymes and release of cysteine, ultimately required for IL-1 beta processing and secretion. The Journal of Immunology, 2009, 183: 1456-1462
    • …
    corecore