159 research outputs found
Efficacy of hyaluronate injections in rotator cuff disorders: a level-I meta-analysis
Background: Rotator cuff disease is the most common cause of shoulder pain and weakness. Conservative treatment is the first choice of shoulder pain management.
Viscosupplementation of hyaluronic acid (HA) seems to be effective for management of tendon disorders.
The objective of this study was to evaluate the scientific evidence reported in literature according to HA shoulder injection in rotator cuff disorders treatment.
Methods: An English-language systematic literature search was performed by two independent researchers; data sources included the following databases:
MEDLINE, Embase, CINAHL, Google scholar web, Ovid database, Physiotherapy Evidence Database (PEDro), and the Cochrane Library. We performed a broad
research for relevant study up to February 2017. Articles were included if they reported data on clinical and functional outcomes in patients who had undergone HA
injection for management of rotator cuff pathology compared to placebo, corticosteroid injection and/or physical therapies. Methodological quality was assessed with
the PEDro rating scale. The outcomes were improvement of symptoms (assessed by VAS scale) and shoulder function (assessed through DASH and ASES Score).
Results: 5 RCTs studies (990 patients) were pooled in the Meta-analysis. The PEDro rating scale ranged from 2 to 8. Two studies compared HA injection with
corticosteroid injections, patients were injected once a week for three weeks. Four studies compared HA injection with placebo injection, of which two used 3 weekly
injections and two used 5 weekly injections. Significant difference was found in pain reduction between HA and placebo group at 26 weeks follow-up (MD= -0.51,
95% CI -0.96 to -0.07), p=0.02.
Conclusion: HA injections might be a valuable safe alternative to other conservative methods for the treatment of rotator cuff disorders. Nowadays, few and low
quality randomized controlled trials have been published. Therefore, to reach an overall conclusion about the effect of HA injection in rotator cuff we need more high
quality studies.
Level of evidence: Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence.
Study design: Meta-analys
Temporal Evolution of Bacterial Endophytes Associated to the Roots of Phragmites australis Exploited in Phytodepuration of Wastewater
Improvement of industrial productions through more environment-friendly processes is a hot topic. In particular, land and marine environment pollution is a main concern, considering that recalcitrant compounds can be spread and persist for a long time. In this context, an efficient and cost-effective treatment of wastewater derived from industrial applications is crucial. Phytodepuration has been considered as a possible solution and it is based on the use of plants and their associated microorganisms to remove and/or transform pollutants. In this work we investigated the culturable microbiota of Phragmites australis roots, sampled from the constructed wetlands (CWs) pilot plant in the G.I.D.A. SpA wastewater treatment plant (WWTP) of Calice (Prato, Tuscany, Italy) before and after the CW activation in order to check how the influx of wastewater might affect the resident bacterial community. P. australis specimens were sampled and a panel of 294 culturable bacteria were isolated and characterized. This allowed to identify the dynamics of the microbiota composition triggered by the presence of wastewater. 27 out of 37 bacterial genera detected were exclusively associated to wastewater, and Pseudomonas was constantly the most represented genus. Moreover, isolates were assayed for their resistance against eight different antibiotics and synthetic wastewater (SWW). Data obtained revealed the presence of resistant phenotypes, including multi-drug resistant bacteria, and a general trend regarding the temporal evolution of resistance patterns: indeed, a direct correlation linking the appearance of antibiotic- and SWW-resistance with the time of exposure to wastewater was observed. In particular, nine isolates showed an interesting behavior since their growth was positively affected by the highest concentrations of SWW. Noteworthy, this study is among the few investigating the P. australis microbiota prior to the plant activation
Environmentally safe ZVI/ZnS-based polymer composite for lindane degradation in water: Assessment of photocatalytic activity and eco-toxicity
Monolithic composite aerogel based on a photocatalytic system, constituted by Fe0 (ZVI) coupled with ZnS (FZ), embedded into syndiotactic polystyrene (sPS) matrix was used, for the first time, in the lindane degradation under UV light. The content of FZ photocatalyst inside the monolithic composite aerogel (FZsPS) composite was 3 wt%. FESEM images of FZsPS indicate that the FZ photocatalyst is well dispersed in the polymer matrix. EDS analyses and temperature-programmed reduction (TPR-H2) measurements revealed an interpenetrated structure of the ZVI and ZnS phases as well the presence of some iron in an oxidized form. Photocatalytic activity data showed that in presence FZsPS aerogel, the almost complete lindane degradation was achieved after only 30 min of UV irradiation time. FZsPS was also effective in the lindane mineralization since a TOC removal of about 94 % was detected after 180 min of treatment time. Remarkably, based on the toxicity evaluation on Artemia fran-ciscana, while the bare FZ photocatalyst showed significant toxicity per se, no toxicity or genotoxicity was found in the water treated with the FZsPS composite system where FZ is immobilized into the sPS aerogel matrix. Therefore the proposed composite photocatalyst can be considered as a model for a strategy to eliminate the environmental impact of catalysts that would otherwise be harmful to water
A Randomized Trial of Intravenous Amino Acids for Kidney Protection
Background Acute kidney injury (AKI) is a serious and common complication of cardiac surgery, for which reduced kidney perfusion is a key contributing factor. Intravenous amino acids increase kidney perfusion and recruit renal functional reserve. However, the efficacy of amino acids in reducing the occurrence of AKI after cardiac surgery is uncertain. Methods In a multinational, double-blind trial, we randomly assigned adult patients who were scheduled to undergo cardiac surgery with cardiopulmonary bypass to receive an intravenous infusion of either a balanced mixture of amino acids, at a dose of 2 g per kilogram of ideal body weight per day, or placebo (Ringer's solution) for up to 3 days. The primary outcome was the occurrence of AKI, defined according to the Kidney Disease: Improving Global Outcomes creatinine criteria. Secondary outcomes included the severity of AKI, the use and duration of kidney-replacement therapy, and all-cause 30-day mortality. Results We recruited 3511 patients at 22 centers in three countries and assigned 1759 patients to the amino acid group and 1752 to the placebo group. AKI occurred in 474 patients (26.9%) in the amino acid group and in 555 (31.7%) in the placebo group (relative risk, 0.85; 95% confidence interval [CI], 0.77 to 0.94; P=0.002). Stage 3 AKI occurred in 29 patients (1.6%) and 52 patients (3.0%), respectively (relative risk, 0.56; 95% CI, 0.35 to 0.87). Kidney-replacement therapy was used in 24 patients (1.4%) in the amino acid group and in 33 patients (1.9%) in the placebo group. There were no substantial differences between the two groups in other secondary outcomes or in adverse events. Conclusions Among adult patients undergoing cardiac surgery, infusion of amino acids reduced the occurrence of AKI
Liposomal vaccines incorporating molecular adjuvants and intrastructural T-cell help promote the immunogenicity of HIV membrane-proximal external region peptides
An HIV vaccine capable of inducing high and durable levels of broadly neutralizing antibodies has thus far proven elusive. A promising antigen is the membrane-proximal external region (MPER) from gp41, a segment of the viral envelope recognized by a number of broadly neutralizing antibodies. Though an attractive vaccine target due to the linear nature of the epitope and its highly conserved sequence, MPER peptides are poorly immunogenic and may require display on membranes to achieve a physiological conformation matching the native virus. Here we systematically explored how the structure and composition of liposomes displaying MPER peptides impacts the strength and durability of humoral responses to this antigen as well as helper T-cell responses in mice. Administration of MPER peptides anchored to the surface of liposomes induced MPER-specific antibodies whereas MPER administered in oil-based emulsion adjuvants or alum did not, even when combined with Toll-like receptor agonists. High-titer IgG responses to liposomal MPER required the inclusion of molecular adjuvants such as monophosphoryl lipid A. Anti-MPER humoral responses were further enhanced by incorporating high-Tm lipids in the vesicle bilayer and optimizing the MPER density to a mean distance of ∼10–15 nm between peptides on the liposomes' surfaces. Encapsulation of helper epitopes within the vesicles allowed efficient “intrastructural” T-cell help, which promoted IgG responses to MPER while minimizing competing B-cell responses against the helper sequence. These results define several key properties of liposome formulations that promote durable, high-titer antibody responses against MPER peptides, which will be a prerequisite for a successful MPER-targeting vaccine.Bill & Melinda Gates FoundationNational Institutes of Health (U.S.) (AI091693
Natural and Synthetic Polymers as Inhibitors of Drug Efflux Pumps
Inhibition of efflux pumps is an emerging approach in cancer therapy and drug delivery. Since it has been discovered that polymeric pharmaceutical excipients such as Tweens® or Pluronics® can inhibit efflux pumps, various other polymers have been investigated regarding their potential efflux pump inhibitory activity. Among them are polysaccharides, polyethylene glycols and derivatives, amphiphilic block copolymers, dendrimers and thiolated polymers. In the current review article, natural and synthetic polymers that are capable of inhibiting efflux pumps as well as their application in cancer therapy and drug delivery are discussed
- …