214 research outputs found

    Creation, Transfer, and Diffusion of Innovation in Organizations and Society: Information Systems Design Science Research for Human Benefit

    Full text link
    International audienceDesign science research is a way of creating and studying new technological phenomena, where the understanding comes from inventing, designing, and building new forms of solutions to problems. It has been touted as a new means for the IS field to improve its relevance as the resulting design artifact(s) can directly be used to solve relevant problems. DSR is different from other types of research in its focus on building artifacts and learning from the use and application of the artifacts. It is different in that it engages reality in a way that no descriptive or observational research method can. DSR shares the iterative process with action research but can take place in a laboratory without any involvement of users as researchers (Iivari and Venable 2009)

    Process Mining for Six Sigma

    Get PDF
    Process mining offers a set of techniques for gaining data-based insights into business processes from event logs. The literature acknowledges the potential benefits of using process mining techniques in Six Sigma-based process improvement initiatives. However, a guideline that is explicitly dedicated on how process mining can be systematically used in Six Sigma initiatives is lacking. To address this gap, the Process Mining for Six Sigma (PMSS) guideline has been developed to support organizations in systematically using process mining techniques aligned with the DMAIC (Define-Measure-Analyze-Improve-Control) model of Six Sigma. Following a design science research methodology, PMSS and its tool support have been developed iteratively in close collaboration with experts in Six Sigma and process mining, and evaluated by means of focus groups, demonstrations and interviews with industry experts. The results of the evaluations indicate that PMSS is useful as a guideline to support Six Sigma-based process improvement activities. It offers a structured guideline for practitioners by extending the DMAIC-based standard operating procedure. PMSS can help increasing the efficiency and effectiveness of Six Sigma-based process improving efforts. This work extends the body of knowledge in the fields of process mining and Six Sigma, and helps closing the gap between them. Hence, it contributes to the broad field of quality management

    The Dynamics of Ca2+ Ions within the Solvation Shell of Calbindin D9k

    Get PDF
    The encounter of a Ca2+ ion with a protein and its subsequent binding to specific binding sites is an intricate process that cannot be fully elucidated from experimental observations. We have applied Molecular Dynamics to study this process with atomistic details, using Calbindin D9k (CaB) as a model protein. The simulations show that in most of the time the Ca2+ ion spends within the Debye radius of CaB, it is being detained at the 1st and 2nd solvation shells. While being detained near the protein, the diffusion coefficient of the ion is significantly reduced. However, due to the relatively long period of detainment, the ion can scan an appreciable surface of the protein. The enhanced propagation of the ion on the surface has a functional role: significantly increasing the ability of the ion to scan the protein's surface before being dispersed to the bulk. The contribution of this mechanism to Ca2+ binding becomes significant at low ion concentrations, where the intervals between successive encounters with the protein are getting longer. The efficiency of the surface diffusion is affected by the distribution of charges on the protein's surface. Comparison of the Ca2+ binding dynamics in CaB and its E60D mutant reveals that in the wild type (WT) protein the carboxylate of E60 function as a preferred landing-site for the Ca2+ arriving from the bulk, followed by delivering it to the final binding site. Replacement of the glutamate by aspartate significantly reduced the ability to transfer Ca2+ ions from D60 to the final binding site, explaining the observed decrement in the affinity of the mutated protein to Ca2+

    Group A Streptococcus Secreted Esterase Hydrolyzes Platelet-Activating Factor to Impede Neutrophil Recruitment and Facilitate Innate Immune Evasion

    Get PDF
    The innate immune system is the first line of host defense against invading organisms. Thus, pathogens have developed virulence mechanisms to evade the innate immune system. Here, we report a novel means for inhibition of neutrophil recruitment by Group A Streptococcus (GAS). Deletion of the secreted esterase gene (designated sse) in M1T1 GAS strains with (MGAS5005) and without (MGAS2221) a null covS mutation enhances neutrophil ingress to infection sites in the skin of mice. In trans expression of SsE in MGAS2221 reduces neutrophil recruitment and enhances skin invasion. The sse deletion mutant of MGAS5005 (ΔsseMGAS5005) is more efficiently cleared from skin than the parent strain. SsE hydrolyzes the sn-2 ester bond of platelet-activating factor (PAF), converting biologically active PAF into inactive lyso-PAF. KM and kcat of SsE for hydrolysis of 2-thio-PAF were similar to those of the human plasma PAF acetylhydrolase. Treatment of PAF with SsE abolishes the capacity of PAF to induce activation and chemotaxis of human neutrophils. More importantly, PAF receptor-deficient mice significantly reduce neutrophil infiltration to the site of ΔsseMGAS5005 infection. These findings identify the first secreted PAF acetylhydrolase of bacterial pathogens and support a novel GAS evasion mechanism that reduces phagocyte recruitment to sites of infection by inactivating PAF, providing a new paradigm for bacterial evasion of neutrophil responses

    Predicting Spatial Patterns of Plant Recruitment Using Animal-Displacement Kernels

    Get PDF
    For plants dispersed by frugivores, spatial patterns of recruitment are primarily influenced by the spatial arrangement and characteristics of parent plants, the digestive characteristics, feeding behaviour and movement patterns of animal dispersers, and the structure of the habitat matrix. We used an individual-based, spatially-explicit framework to characterize seed dispersal and seedling fate in an endangered, insular plant-disperser system: the endemic shrub Daphne rodriguezii and its exclusive disperser, the endemic lizard Podarcis lilfordi. Plant recruitment kernels were chiefly determined by the disperser's patterns of space utilization (i.e. the lizard's displacement kernels), the position of the various plant individuals in relation to them, and habitat structure (vegetation cover vs. bare soil). In contrast to our expectations, seed gut-passage rate and its effects on germination, and lizard speed-of-movement, habitat choice and activity rhythm were of minor importance. Predicted plant recruitment kernels were strongly anisotropic and fine-grained, preventing their description using one-dimensional, frequency-distance curves. We found a general trade-off between recruitment probability and dispersal distance; however, optimal recruitment sites were not necessarily associated to sites of maximal adult-plant density. Conservation efforts aimed at enhancing the regeneration of endangered plant-disperser systems may gain in efficacy by manipulating the spatial distribution of dispersers (e.g. through the creation of refuges and feeding sites) to create areas favourable to plant recruitment

    Demographic and Genetic Patterns of Variation among Populations of Arabidopsis thaliana from Contrasting Native Environments

    Get PDF
    Background: Understanding the relationship between environment and genetics requires the integration of knowledge on the demographic behavior of natural populations. However, the demographic performance and genetic composition of Arabidopsis thaliana populations in the species' native environments remain largely uncharacterized. This information, in combination with the advances on the study of gene function, will improve our understanding on the genetic mechanisms underlying adaptive evolution in A. thaliana. Methodology/Principal Findings: We report the extent of environmental, demographic, and genetic variation among 10 A. thaliana populations from Mediterranean (coastal) and Pyrenean (montane) native environments in northeast Spain. Geographic, climatic, landscape, and soil data were compared. Demographic traits, including the dynamics of the soil seed bank and the attributes of aboveground individuals followed over a complete season, were also analyzed. Genetic data based on genome-wide SNP markers were used to describe genetic diversity, differentiation, and structure. Coastal and montane populations significantly differed in terms of environmental, demographic, and genetic characteristics. Montane populations, at higher altitude and farther from the sea, are exposed to colder winters and prolonged spring moisture compared to coastal populations. Montane populations showed stronger secondary seed dormancy, higher seedling/juvenile mortality in winter, and initiated flowering later than coastal populations. Montane and coastal regions were genetically differentiated, montane populations bearing lower genetic diversity than coastal ones. No significant isolation-by-distance pattern and no shared multilocus genotypes among populations were detected. Conclusions/Significance: Between-region variation in climatic patterns can account for differences in demographic traits, such as secondary seed dormancy, plant mortality, and recruitment, between coastal and montane A. thaliana populations. In addition, differences in plant mortality can partly account for differences in the genetic composition of coastal and montane populations. This study shows how the interplay between variation in environmental, demographic, and genetic parameters may operate in natural A. thaliana populations. © 2009 Montesinos et al

    Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness

    Get PDF
    Chagas disease, leishmaniasis and sleeping sickness affect 20 million people worldwide and lead to more than 50,000 deaths annually. The diseases are caused by infection with the kinetoplastid parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These parasites have similar biology and genomic sequence, suggesting that all three diseases could be cured with drugs that modulate the activity of a conserved parasite target. However, no such molecular targets or broad spectrum drugs have been identified to date. Here we describe a selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, which cleared parasites from mice in all three models of infection. GNF6702 inhibits the kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian proteasome or growth of mammalian cells, and is well-tolerated in mice. Our data provide genetic and chemical validation of the parasite proteasome as a promising therapeutic target for treatment of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for these neglected diseases

    Role of Sphingomyelin Synthase in Controlling the Antimicrobial Activity of Neutrophils against Cryptococcus neoformans

    Get PDF
    The key host cellular pathway(s) necessary to control the infection caused by inhalation of the environmental fungal pathogen Cryptococcus neoformans are still largely unknown. Here we have identified that the sphingolipid pathway in neutrophils is required for them to exert their killing activity on the fungus. In particular, using both pharmacological and genetic approaches, we show that inhibition of sphingomyelin synthase (SMS) activity profoundly impairs the killing ability of neutrophils by preventing the extracellular release of an antifungal factor(s). We next found that inhibition of protein kinase D (PKD), which controls vesicular sorting and secretion and is regulated by diacylglycerol (DAG) produced by SMS, totally blocks the extracellular killing activity of neutrophils against C. neoformans. The expression of SMS genes, SMS activity and the levels of the lipids regulated by SMS (namely sphingomyelin (SM) and DAG) are up-regulated during neutrophil differentiation. Finally, tissue imaging of lungs infected with C. neoformans using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS), revealed that specific SM species are associated with neutrophil infiltration at the site of the infection. This study establishes a key role for SMS in the regulation of the killing activity of neutrophils against C. neoformans through a DAG-PKD dependent mechanism, and provides, for the first time, new insights into the protective role of host sphingolipids against a fungal infection
    • …
    corecore