35 research outputs found

    Plant Ribosomal Proteins, RPL12 and RPL19, Play a Role in Nonhost Disease Resistance against Bacterial Pathogens

    Get PDF
    Characterizing the molecular mechanism involved in nonhost disease resistance is important to understand the adaptations of plant-pathogen interactions. In this study, virus-induced gene silencing (VIGS)-based forward genetics screen was utilized to identify genes involved in nonhost resistance in Nicotiana benthamiana. Genes encoding ribosomal proteins, RPL12 and RPL19, were identified in the screening. These genes when silenced in N. benthamiana caused a delay in nonhost bacteria induced hypersensitive response (HR) with concurrent increase in nonhost bacterial multiplication. Arabidopsis mutants of AtRPL12 and AtRPL19 also compromised in nonhost resistance. The studies on NbRPL12 and NbRPL19 double silenced plants suggested that both RPL12 and RPL19 act in the same pathway to confer nonhost resistance. Our work suggests a role for RPL12 and RPL19 in nonhost disease resistance in N. benthamiana and Arabidopsis. In addition, we show that these genes also play a minor role in basal resistance against virulent pathogens

    Cross-Talk Signaling in Rice During Combined Drought and Bacterial Blight Stress

    Get PDF
    Due to climatic changes, rice crop is affected by moisture deficit stress and pathogens. Tissue water limitation besides reducing growth rates, also renders the crop susceptible to the infection by Xanthomonas oryzae pv. oryzae (Xoo) that causes bacterial leaf blight. Independently, both drought adaptation and Xoo resistance have been extensively studied. Though the cross-talk between drought and Xoo stress responses have been explored from individual stress studies, examining the combinatorial stress response is limited in rice. Recently published combined stress studies showed that under the combined stress, maintenance of carbon assimilation is hindered and such response is regulated by overlapping cellular mechanisms that are different from either of the individual stresses. Several receptors, MAP kinases, transcription factors, and ribosomal proteins, are predicted for playing a role in cellular homeostasis and protects cells from combined stress effects. Here we provide a critical analysis of these aspects using information from the recently published combined stress literature. This review is useful for researchers to comprehend combinatorial stress response of rice plants to drought and Xoo

    Formate Dehydrogenase (FDH1) Localizes to Both Mitochondria and Chloroplast to Play a Role in Host and Nonhost Disease Resistance

    Get PDF
    Nonhost disease resistance is the most common type of plant defense mechanism against potential pathogens. In this study, the metabolic enzyme formate dehydrogenase (FDH1) was identified to be involved in nonhost disease resistance in Nicotiana benthamiana and Arabidopsis thaliana. In Arabidopsis, AtFDH1 was highly upregulated in response to both host and nonhost bacterial pathogens. Arabidopsis Atfdh1 mutants were compromised in nonhost resistance, basal resistance, and gene-for-gene resistance. The expression patterns of salicylic acid (SA) and jasmonic acid (JA) marker genes after pathogen infections in Atfdh1 mutant indicated that SA is most likely involved in the FDH1-mediated plant defense response to both host and nonhost bacterial pathogens. Previous studies reported that FDH1 localizes to only mitochondria, or both mitochondria and chloroplasts. Our results showed that the AtFDH1 localized to mitochondria and the amount of FDH1 localized to mitochondria increased upon infection with host or nonhost pathogens. Interestingly, the subcellular localization of FDH1 was observed in both mitochondria and chloroplasts after infection with a nonhost pathogen in Arabidopsis. We speculate that FDH1 plays a role in cellular signaling networks between mitochondria and chloroplasts to produce coordinated defense responses such as SA-induced reactive oxygen species (ROS) generation and hypersensitive response (HR)-induced cell death against nonhost bacterial pathogens

    Simultaneous expression of regulatory genes associated with specific drought‐adaptive traits improves drought adaptation in peanut

    Get PDF
    Adaptation of crops to drought-prone rain-fed conditions can be achieved by improving plant traits such as efficient water mining (by superior root characters) and cellular-level tolerance mechanisms. Pyramiding these drought-adaptive traits by simultaneous expression of genes regulating drought-adaptive mechanisms has phenomenal relevance in improving stress tolerance. In this study, we provide evidence that peanut transgenic plants expressing Alfalfa zinc finger 1 (Alfin1), a root growth-associated transcription factor gene, Pennisetum glaucum heat-shock factor (PgHSF4) and Pea DNA helicase (PDH45) involved in protein turnover and protection showed improved tolerance, higher growth and productivity under drought stress conditions. Stable integration of all the transgenes was noticed in transgenic lines. The transgenic lines showed higher root growth, cooler crop canopy air temperature difference (less CCATD) and higher relative water content (RWC) under drought stress. Low proline levels in transgenic lines substantiate the maintenance of higher water status. The survival and recovery of transgenic lines was significantly higher under gradual moisture stress conditions with higher biomass. Transgenic lines also showed significant tolerance to ethrel-induced senescence and methyl viologen-induced oxidative stress. Several stress-responsive genes such as heat-shock proteins (HSPs), RING box protein-1 (RBX1), Aldose reductase, late embryogenesis abundant-5 (LEA5) and proline-rich protein-2 (PRP2), a gene involved in root growth, showed enhanced expression under stress in transgenic lines. Thus, the simultaneous expression of regulatory genes contributing for drought-adaptive traits can improve crop adaptation and productivity under water-limited conditions

    The ATPase Activity of Escherichia coli Expressed AAA+-ATPase Protein

    No full text
    ATPases are the enzymes that breakdown ATP to ADP and release inorganic phosphate (Pi). Here we provide a detailed protocol to determine the ATPase activity of a recombinant AAA+-ATPase protein (GENERAL CONTROL NON-REPRESSIBLE-4 [GCN4]) by spectrophotometric absorption at 360 nm to measure the accumulated inorganic phosphate. In general, the substrate 2-amino-6-mercapto-7methylpurine riboside (methylthioguanosine, a guanosine analog: MESG) is enzymatically converted in the presence of Pi by purine nucleoside phosphorylase (PNP) to ribose 1-phosphate and 2-amino-6-mercapto-7-methylpurine. The spectrophotometric shift in maximum absorbance at 330 nm for the MESG substrate and subsequent conversion product at 360 nm due to enzymatic conversion was measured. The GCN4-His-tagged recombinant protein was expressed in Escherichia coli BL21 cells and purified using Ni-NTA column. This purified protein was then used for the quantitation of Pi in solution or the continuous determination of Pi released due to the ATPase activity of GCN4, an AAA+-ATPase protein conserved in many eukaryotes, which in plants regulates stomatal aperture during biotic and abiotic stress in plants

    Acquired Traits Contribute More to Drought Tolerance in Wheat Than in Rice

    No full text
    Drought tolerance is governed by constitutive and acquired traits. Combining them has relevance for sustaining crop productivity under drought. Mild levels of stress induce specific mechanisms that protect metabolism when stress becomes severe. Here, we report a comparative assessment of “acquired drought tolerance (ADT)” traits in two rice cultivars, IR64 (drought susceptible) and Apo (tolerant), and a drought-tolerant wheat cultivar, Weebill. Young seedlings were exposed to progressive concentrations of methyl viologen (MV), a stress inducer, before transferring to a severe concentration. “Induced” seedlings showed higher tolerance and recovery growth than seedlings exposed directly to severe stress. A novel phenomic platform with an automated irrigation system was used for precisely imposing soil moisture stress to capture ADT traits during the vegetative stage. Gradual progression of drought was achieved through a software-controlled automated irrigation facility. This facility allowed the maintenance of the same level of soil moisture irrespective of differences in transpiration, and hence, this platform provided the most appropriate method to assess ADT traits. Total biomass decreased more in IR64 than in Apo. The wheat cultivar showed lower levels of damage and higher recovery growth even compared to Apo. Expression of ROS-scavenging enzymes and drought-responsive genes was significantly higher in Apo than in IR64, but differences were only marginal between Apo and Weebill. The wheat cultivar showed significantly higher stomatal conductance, carbon gain, and biomass than the rice cultivars, under drought. These differences in ADT traits between cultivars as well as between species can be utilised for improving drought tolerance in crop plants

    Transcriptome Analysis of Sunflower Genotypes with Contrasting Oxidative Stress Tolerance Reveals Individual- and Combined- Biotic and Abiotic Stress Tolerance Mechanisms.

    No full text
    In nature plants are often simultaneously challenged by different biotic and abiotic stresses. Although the mechanisms underlying plant responses against single stress have been studied considerably, plant tolerance mechanisms under combined stress is not understood. Also, the mechanism used to combat independently and sequentially occurring many number of biotic and abiotic stresses has also not systematically studied. From this context, in this study, we attempted to explore the shared response of sunflower plants to many independent stresses by using meta-analysis of publically available transcriptome data and transcript profiling by quantitative PCR. Further, we have also analyzed the possible role of the genes so identified in contributing to combined stress tolerance. Meta-analysis of transcriptomic data from many abiotic and biotic stresses indicated the common representation of oxidative stress responsive genes. Further, menadione-mediated oxidative stress in sunflower seedlings showed similar pattern of changes in the oxidative stress related genes. Based on this a large scale screening of 55 sunflower genotypes was performed under menadione stress and those contrasting in oxidative stress tolerance were identified. Further to confirm the role of genes identified in individual and combined stress tolerance the contrasting genotypes were individually and simultaneously challenged with few abiotic and biotic stresses. The tolerant hybrid showed reduced levels of stress damage both under combined stress and few independent stresses. Transcript profiling of the genes identified from meta-analysis in the tolerant hybrid also indicated that the selected genes were up-regulated under individual and combined stresses. Our results indicate that menadione-based screening can identify genotypes not only tolerant to multiple number of individual biotic and abiotic stresses, but also the combined stresses

    Stable expression of mtlD gene imparts multiple stress tolerance in finger millet.

    No full text
    Finger millet is susceptible to abiotic stresses, especially drought and salinity stress, in the field during seed germination and early stages of seedling development. Therefore developing stress tolerant finger millet plants combating drought, salinity and associated oxidative stress in these two growth stages is important. Cellular protection through osmotic adjustment and efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms in plants. Mannitol, an osmolyte, is known to scavenge hydroxyl radicals generated during various abiotic stresses and thereby minimize stress damage in several plant species. In this study transgenic finger millet plants expressing the mannitol biosynthetic pathway gene from bacteria, mannitol-1-phosphate dehydrogenase (mtlD), were developed through Agrobacterium tumefaciens-mediated genetic transformation. mtlD gene integration in the putative transgenic plants was confirmed by Southern blot. Further, performance of transgenic finger millet under drought, salinity and oxidative stress was studied at plant level in T1 generation and in T1 and T2 generation seedlings. Results from these experiments showed that transgenic finger millet had better growth under drought and salinity stress compared to wild-type. At plant level, transgenic plants showed better osmotic adjustment and chlorophyll retention under drought stress compared to the wild-type. However, the overall increase in stress tolerance of transgenics for the three stresses, especially for oxidative stress, was only marginal compared to other mtlD gene expressing plant species reported in the literature. Moreover, the Agrobacterium-mediated genetic transformation protocol developed for finger millet in this study can be used to introduce diverse traits of agronomic importance in finger millet

    Induction of Acquired Tolerance Through Gradual Progression of Drought Is the Key for Maintenance of Spikelet Fertility and Yield in Rice Under Semi-irrigated Aerobic Conditions

    No full text
    Plants have evolved several adaptive mechanisms to cope with water-limited conditions. While most of them are through constitutive traits, certain “acquired tolerance” traits also provide significant improvement in drought adaptation. Most abiotic stresses, especially drought, show a gradual progression of stress and hence provide an opportunity to upregulate specific protective mechanisms collectively referred to as “acquired tolerance” traits. Here, we demonstrate a significant genetic variability in acquired tolerance traits among rice germplasm accessions after standardizing a novel gradual stress progress protocol. Two contrasting genotypes, BPT 5204 (drought susceptible) and AC 39000 (tolerant), were used to standardize methodology for capturing acquired tolerance traits at seedling phase. Seedlings exposed to gradual progression of stress showed higher recovery with low free radical accumulation in both the genotypes compared to rapid stress. Further, the gradual stress progression protocol was used to examine the role of acquired tolerance at flowering phase using a set of 17 diverse rice genotypes. Significant diversity in free radical production and scavenging was observed among these genotypes. Association of these parameters with yield attributes showed that genotypes that managed free radical levels in cells were able to maintain high spikelet fertility and hence yield under stress. This study, besides emphasizing the importance of acquired tolerance, explains a high throughput phenotyping approach that significantly overcomes methodological constraints in assessing genetic variability in this important drought adaptive mechanism.</p

    Leaf anatomical study and microscopic view of epidermal impression of transgenic and wild type plants (40X magnification).

    No full text
    <p>A) Leaf cross-sections observed under microscope. For histological studies, the top third leaf of transgenic and wild type plants was taken and microtome sections were made. Staining was done using eosin (stains nucleus) and hematoxylin (stains cytoplasm). B) Photograph showing abaxial surface of leaves from transgenic and wild type plants. C) Graph depicting stomatal index of transgenic and wild type plants. Data represent mean of three replications (n = 3) and bars indicate standard error of mean. The lowercase letters that are different indicate significant difference (Duncan’s multiple range test, P<0.05) between transgenic and wild type plants. x- xylem, p-phloem, S-spongy parenchyma, P-palisade parenchyma, ad-Adaxial, ab- abaxial.</p
    corecore