3,602 research outputs found
Additional development of large diameter carbon monofilament
The chemical vapor process for preparing a large diameter carbon-base monofilament from a BCl3, Ch4 and H2 gas mixture with a carbon substrate fiber was studied. The effect of reactor geometry, total gas flows and deposition temperature on the tensile strength of the monofilament were investigated. It was noted that consistent results could only be obtained when the carbon substrate fiber was cleaned. The strength of the monofilament was found to depend on the highest temperature and the temperature profile of the monofilament in the reactor. The strength of monofilament produced in the dc and RF reactors were found to be similar and similar alloy compositions in the monofilament were attained when the same gas ratios were used. The tensile strength of the monofilament at 500 C was found to be 60 to 70% of the room temperature tensile strength. No degradation was noted after exposure to molten aluminum
Study of high resistance inorganic coatings on graphite fibers
Coatings made of boron, silicon carbide, silica, and silica-like materials were studied to determine their ability to increase resistance of graphite fibers. The most promising results were attained by chemical vapor depositing silicon carbide on graphite fiber followed by oxidation, and drawing graphite fiber through ethyl silicate followed by appropriate heat treatments. In the silicon carbide coating studies, no degradation of the graphite fibers was observed and resistance values as high as three orders of magnitude higher than that of the uncoated fiber was attained. The strength of a composite fabricated from the coated fiber had a strength which compared favorably with those of composites prepared from uncoated fiber. For the silica-like coated fiber prepared by drawing the graphite fiber through an ethyl silicate solution followed by heating, coated fiber resistances about an order of magnitude greater than that of the uncoated fiber were attained. Composites prepared using these fibers had flexural strengths comparable with those prepared using uncoated fibers, but the shear strengths were lower
Coatings for graphite fibers
Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature
Application of diffusion barriers to the refractory fibers of tungsten, columbium, carbon and aluminum oxide
A radio frequency powered ion-plating system was used to plate protective layers of refractory oxides and carbide onto high strength fiber substrates. Subsequent overplating of these combinations with nickel and titanium was made to determine the effectiveness of such barrier layers in preventing diffusion of the overcoat metal into the fibers with consequent loss of fiber strength. Four substrates, five coatings, and two metal matrix materials were employed for a total of forty material combinations. The substrates were tungsten, niobium, NASA-Hough carbon, and Tyco sapphire. The diffusion-barrier coatings were aluminum oxide, yttrium oxide, titanium carbide, tungsten carbide with 14% cobalt addition, and zirconium carbide. The metal matrix materials were IN 600 nickel and Ti 6/4 titanium. Adhesion of the coatings to all substrates was good except for the NASA-Hough carbon, where flaking off of the oxide coatings in particular was observed
Model for the spatio-temporal intermittency of the energy dissipation in turbulent flows
Modeling the intermittent behavior of turbulent energy dissipation processes
both in space and time is often a relevant problem when dealing with phenomena
occurring in high Reynolds number flows, especially in astrophysical and space
fluids. In this paper, a dynamical model is proposed to describe the
spatio-temporal intermittency of energy dissipation rate in a turbulent system.
This is done by using a shell model to simulate the turbulent cascade and
introducing some heuristic rules, partly inspired by the well known -model,
to construct a spatial structure of the energy dissipation rate. In order to
validate the model and to study its spatially intermittency properties, a
series of numerical simulations have been performed. These show that the level
of spatial intermittency of the system can be simply tuned by varying a single
parameter of the model and that scaling laws in agreement with those obtained
from experiments on fully turbulent hydrodynamic flows can be recovered. It is
finally suggested that the model could represent a useful tool to simulate the
spatio-temporal intermittency of turbulent energy dissipation in those high
Reynolds number astrophysical fluids where impulsive energy release processes
can be associated to the dynamics of the turbulent cascade.Comment: 22 pages, 9 figure
On the probability distribution function of small scale interplanetary magnetic field fluctuations
In spite of a large number of papers dedicated to study MHD turbulence in the
solar wind there are still some simple questions which have never been
sufficiently addressed like: a)do we really know how the magnetic field vector
orientation fluctuates in space? b) what is the statistics followed by the
orientation of the vector itself? c) does the statistics change as the wind
expands into the interplanetary space? A better understanding of these points
can help us to better characterize the nature of interplanetary fluctuations
and can provide useful hints to investigators who try to numerically simulate
MHD turbulence. This work follows a recent paper presented by the same authors.
This work follows a recent paper presented by some of the authors which shows
that these fluctuations might resemble a sort of random walk governed by a
Truncated Leevy Flight statistics. However, the limited statistics used in that
paper did not allow final conclusions but only speculative hypotheses. In this
work we aim to address the same problem using a more robust statistics which on
one hand forces us not to consider velocity fluctuations but, on the other hand
allows us to establish the nature of the governing statistics of magnetic
fluctuations with more confidence. In addition, we show how features similar to
those found in the present statistical analysis for the fast speed streams of
solar wind, are qualitatively recovered in numerical simulations of the
parametric instability. This might offer an alternative viewpoint for
interpreting the questions raised above.Comment: 25pag, 20 jpg small size figures. In press on "ANnales Geophysicae"
(September 2004
The Economic Impact of a Junior Club Sporting Event: Caravan Fans
This study investigated the economic impact of visitor’s expenditures at a junior girl’s club sporting event in the city of Denver, Colorado. This study uses a random sample of 2,000 sport fans of which 1,163 surveys were found to be usable (n=1,163). The findings reveal that hosting a club sports national tournament can generate substantial economic benefits and, in some cases, greater than those associated with mega sporting events. Key findings are that economic impact can play a critical role in assessing the potential benefits of hosting small events and that youth sport event managers must make sure to meet the needs of caravan fans. Caravan fans are the parents and family members that attend these events to watch their children participate
Persistence of small-scale anisotropy of magnetic turbulence as observed in the solar wind
The anisotropy of magnetophydrodynamic turbulence is investigated by using
solar wind data from the Helios 2 spacecraft. We investigate the behaviour of
the complete high-order moment tensors of magnetic field increments and we
compare the usual longitudinal structure functions which have both isotropic
and anisotropic contributions, to the fully anisotropic contribution. Scaling
exponents have been extracted by an interpolation scaling function. Unlike the
usual turbulence in fluid flows, small-scale magnetic fluctuations remain
anisotropic. We discuss the radial dependence of both anisotropy and
intermittency and their relationship.Comment: 7 pages, 2 figures, in press on Europhys. Let
- …