109 research outputs found

    Ten-Year Longitudinal Study of Thyroid Function in Children with Down's Syndrome

    Get PDF
    Background/Aims: The natural history of thyroid function in children with Down's syndrome is relatively unknown. We hypothesized that in these patients the occurrence of thyroid dysfunction rises during development. Methods: Thyroid function was assessed yearly in 145 children with Down's syndrome, all followed from birth up to 10 years of age. Heteroskedastic binary and ordinary logistic regression for repeated measures was used to evaluate the relationship of thyroid function with continuous time. Results: Congenital hypothyroidism was detected in 7% of cases. The probability of acquired thyroid dysfunction increased from 30% at birth to 49% at 10 years (p < 0.001). The subclinical hypothyroidism was nearly stable during the follow-up. The probability of hypothyroidism increased from 7 to 24% at 10 years (p < 0.001). Positive anti-thyroglobulin antibodies were associated with higher odds of more severe hypothyroidism (odds ratio 3.6). Positive anti-thyroid peroxidase antibodies were a better predictor of more severe hypothyroidism (odds ratio 6.1). Diffuse hypoechogenicity on thyroid ultrasound was found in 34 out of 145 children. Conclusion: The probability of thyroid dysfunction increasing during development is higher than previously reported. Such children should be carefully monitored annually to early identify thyroid dysfunction

    Prognostic Value of 18 F-Fluorocholine PET Parameters in Metastatic Castrate-Resistant Prostate Cancer Patients Treated with Docetaxel

    Get PDF
    Background and Aim. The availability of new treatments for metastatic castrate-resistant prostate cancer (mCRPC) patients increases the need for reliable biomarkers to help clinicians to choose the better sequence strategy. The aim of the present retrospective and observational work is to investigate the prognostic value of 18 F-fluorocholine ( 18 F-FCH) positron emission tomography (PET) parameters in mCRPC. Materials and Methods. Between March 2013 and August 2016, 29 patients with mCRPC were included. They all received three-weekly docetaxel after androgen deprivation therapy, and they underwent 18 F-FCH PET/computed tomography (CT) before and after the therapy. Semi-quantitative indices such as maximum standardized uptake value (SUV max ), mean standardized uptake value (SUV mean ) with partial volume effect (PVC-SUV) correction, metabolically active tumour volume (MATV), and total lesion activity (TLA) with partial volume effect (PVC-TLA) correction were measured both in pre-treatment and post-treatment 18 F-FCH PET/CT scans for each lesion. Whole-body indices were calculated as sum of values measured for each lesion (SSUV max , SPVC-SUV, SMATV, and STLA). Progression-free survival (PFS) and overall survival (OS) were considered as clinical endpoints. Univariate and multivariate hazard ratios for whole-body 18 F-FCH PET indices were performed, and p&lt;0.05 was considered as significant. Results. Cox regression analysis showed a statistically significant correlation between PFS, SMATV, and STLA. No correlations between OS and 18 F-FCH PET parameters were defined probably due to the small sample size. Conclusions. Semi-quantitative indices such as SMATV and STLA at baseline have a prognostic role in patients treated with docetaxel for mCRPC, suggesting a potential role of 18 F-FCH PET/CT imaging in clinical decision-making

    Prevalence of interstitial pneumonia suggestive of COVID-19 at 18F-FDG PET/CT in oncological asymptomatic patients in a high prevalence country during pandemic period: a national multi-centric retrospective study

    Get PDF
    Purpose: To assess the presence and pattern of incidental interstitial lung alterations suspicious of COVID-19 on fluorine-18-fluorodeoxyglucose positron emission tomography (PET)/computed tomography (CT) ([18F]FDG PET/CT) in asymptomatic oncological patients during the period of active COVID-19 in a country with high prevalence of the virus. Methods: This is a multi-center retrospective observational study involving 59 Italian centers. We retrospectively reviewed the prevalence of interstitial pneumonia detected during the COVID period (between March 16 and 27, 2020) and compared to a pre-COVID period (January\u2013February 2020) and a control time (in 2019). The diagnosis of interstitial pneumonia was done considering lung alterations of CT of PET. Results: Overall, [18F]FDG PET/CT was performed on 4008 patients in the COVID period, 19,267 in the pre-COVID period, and 5513 in the control period. The rate of interstitial pneumonia suspicious for COVID-19 was significantly higher during the COVID period (7.1%) compared with that found in the pre-COVID (5.35%) and control periods (5.15%) (p&nbsp;&lt; 0.001). Instead, no significant difference among pre-COVID and control periods was present. The prevalence of interstitial pneumonia detected at PET/CT was directly associated with geographic virus diffusion, with the higher rate in Northern Italy. Among 284 interstitial pneumonia detected during COVID period, 169 (59%) were FDG-avid (average SUVmax of 4.1). Conclusions: A significant increase of interstitial pneumonia incidentally detected with [18F]FDG PET/CT has been demonstrated during the COVID-19 pandemic. A majority of interstitial pneumonia were FDG-avid. Our results underlined the importance of paying attention to incidental CT findings of pneumonia detected at PET/CT, and these reports might help to recognize early COVID-19 cases guiding the subsequent management

    Anti-calmodulins and Tricyclic Adjuvants in Pain Therapy Block the TRPV1 Channel

    Get PDF
    Ca2+-loaded calmodulin normally inhibits multiple Ca2+-channels upon dangerous elevation of intracellular Ca2+ and protects cells from Ca2+-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca2+. Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca2+-uptake via the vanilloid inducible Ca2+-channel/inflamatory pain receptor 1 (TRPV1), which suggests that calmodulin inhibitors may block pore formation and Ca2+ entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced 45Ca2+-uptake at µM concentrations: calmidazolium (broad range)≥trifluoperazine (narrow range)>chlorpromazine/amitriptyline>fluphenazine>>W-7 and W-13 (only partially). Most likely a short acidic domain at the pore loop of the channel orifice functions as binding site either for Ca2+ or anti-calmodulin drugs. Camstatin, a selective peptide blocker of calmodulin, inhibits vanilloid-induced Ca2+-uptake in intact TRPV1+ cells, and suggests an extracellular site of inhibition. TRPV1+, inflammatory pain-conferring nociceptive neurons from sensory ganglia, were blocked by various anti-psychotic and anti-calmodulin drugs. Among them, calmidazolium, the most effective calmodulin agonist, blocked Ca2+-entry by a non-competitive kinetics, affecting the TRPV1 at a different site than the vanilloid binding pocket. Data suggest that various calmodulin antagonists dock to an extracellular site, not found in other Ca2+-channels. Calmodulin antagonist-evoked inhibition of TRPV1 and NMDA receptors/Ca2+-channels was validated by microiontophoresis of calmidazolium to laminectomised rat monitored with extracellular single unit recordings in vivo. These unexpected findings may explain empirically noted efficacy of clinical pain adjuvant therapy that justify efforts to develop hits into painkillers, selective to sensory Ca2+-channels but not affecting motoneurons

    A Positive Feedback Synapse from Retinal Horizontal Cells to Cone Photoreceptors

    Get PDF
    Cone photoreceptors and horizontal cells (HCs) have a reciprocal synapse that underlies lateral inhibition and establishes the antagonistic center-surround organization of the visual system. Cones transmit to HCs through an excitatory synapse and HCs feed back to cones through an inhibitory synapse. Here we report that HCs also transmit to cone terminals a positive feedback signal that elevates intracellular Ca2+ and accelerates neurotransmitter release. Positive and negative feedback are both initiated by AMPA receptors on HCs, but positive feedback appears to be mediated by a change in HC Ca2+, whereas negative feedback is mediated by a change in HC membrane potential. Local uncaging of AMPA receptor agonists suggests that positive feedback is spatially constrained to active HC-cone synapses, whereas the negative feedback signal spreads through HCs to affect release from surrounding cones. By locally offsetting the effects of negative feedback, positive feedback may amplify photoreceptor synaptic release without sacrificing HC-mediated contrast enhancement

    Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation

    Get PDF
    Background: The neuroinflammatory response following traumatic brain injury (TBI) is known to be a key secondary injury factor that can drive ongoing neuronal injury. Despite this, treatments that have targeted aspects of the inflammatory pathway have not shown significant efficacy in clinical trials. Main body: We suggest that this may be because classical inflammation only represents part of the story, with activation of neurogenic inflammation potentially one of the key initiating inflammatory events following TBI. Indeed, evidence suggests that the transient receptor potential cation channels (TRP channels), TRPV1 and TRPA1, are polymodal receptors that are activated by a variety of stimuli associated with TBI, including mechanical shear stress, leading to the release of neuropeptides such as substance P (SP). SP augments many aspects of the classical inflammatory response via activation of microglia and astrocytes, degranulation of mast cells, and promoting leukocyte migration. Furthermore, SP may initiate the earliest changes seen in blood-brain barrier (BBB) permeability, namely the increased transcellular transport of plasma proteins via activation of caveolae. This is in line with reports that alterations in transcellular transport are seen first following TBI, prior to decreases in expression of tight-junction proteins such as claudin-5 and occludin. Indeed, the receptor for SP, the tachykinin NK1 receptor, is found in caveolae and its activation following TBI may allow influx of albumin and other plasma proteins which directly augment the inflammatory response by activating astrocytes and microglia. Conclusions: As such, the neurogenic inflammatory response can exacerbate classical inflammation via a positive feedback loop, with classical inflammatory mediators such as bradykinin and prostaglandins then further stimulating TRP receptors. Accordingly, complete inhibition of neuroinflammation following TBI may require the inhibition of both classical and neurogenic inflammatory pathways.Frances Corrigan, Kimberley A. Mander, Anna V. Leonard and Robert Vin
    • …
    corecore