16 research outputs found

    Ultrasonic synthesis of CeO2@organic dye nanohybrid: environmentally benign rabid electrochemical sensing platform for carcinogenic pollutant in water samples

    Get PDF
    A novel organic-inorganic nile-blue - CeO2 (CeO2/NB) nanohybrid has been synthesized by environmentally benign ultrasonic irradiation method for the selective determination of the environmental pollutant, carcinogenic hydrazine (HZ) in environmental water samples. Hydrophobic dyes have generally been as redox mediators in electrochemical sensors fabrication due to strong electron transfer capacity and they would allow the oxidation and reduction of the analytes at lower potentials. The CeO2 nanoparticles were initially synthesized by the ultrasonic irradiation of Ce(NO3)2, NH4OH and ethylene glycol mixture for 6 h using probe sonicator (20 kHz, 100 W) followed by calcination. The organic-dye NB was then added and ultrasonicated further 30 min for the formation of CeO2/NB nanohybrid material. Various spectroscopic and microscopic tools such as UV–vis and FT-IR spectroscopy, XRD, SEM and high-solution TEM and surface analysis tool Brunauer-Emmett-Teller (BET) confirm the formation of the nanohybrid. HR-TEM images showed the well-covered CeO2 on NB molecules and the average size of the nanohybrid is ~35 nm. For the fabrication of environmental pollutant electrochemical sensor, the prepared CeO2/NB nanohybrid was drop-casted on the electrode surface and utilized for the determination of HZ. The nanohybrid modified electrode exhibits higher electrocatalytic activity by showing enhanced oxidation current and less positive potential shift towards HZ oxidation than the bare and individual CeO2 and NB modified electrodes. The fabricated sensor with excellent reproducibility, repeatability, long-term storage stability and cyclic stability exhibited the sensational sensitivity (484.86 µA mM−1 cm−2) and specificity in the presence of 50-fold possible interfering agents with the lowest limit of detection of 57 nM (S/N = 3) against HZ. Utilization of the present sensor in environmental samples with excellent recovery proves it practicability in the determination of HZ in real-time application

    Fabrication of Adsorbed Fe(III) and Structurally Doped Fe(III) in Montmorillonite/TiO<sub>2</sub> Composite for Photocatalytic Degradation of Phenol

    No full text
    The Fe(III)-doped montmorillonite (Mt)/TiO2 composites were fabricated by adding Fe(III) during or after the aging of TiO2/Ti(OH)4 sol–gel in Mt, named as xFe-Mt/(1 − x)Fe-TiO2 and Fe/Mt/TiO2, respectively. In the xFe-Mt/(1 − x)Fe-TiO2, Fe(III) cations were expected to be located in the structure of TiO2, in the Mt, and in the interface between them, while Fe(III) ions are physically adsorbed on the surfaces of the composites in the Fe/Mt/TiO2. The narrower energy bandgap (Eg) lower photo-luminescence intensity were observed for the composites compared with TiO2. Better photocatalytic performance for phenol degradation was observed in the Fe/Mt/TiO2. The 94.6% phenol degradation was due to greater charge generation and migration capacity, which was confirmed by photocurrent measurements and electrochemical impedance spectroscopy (EIS). The results of the energy-resolved distribution of electron traps (ERDT) suggested that the Fe/Mt/TiO2 possessed a larger amorphous rutile phase content in direct contact with crystal anatase than that of the xFe-Mt/(1 − x)Fe-TiO2. This component is the fraction that is mainly responsible for the photocatalytic phenol degradation by the composites. As for the xFe-Mt/(1 − x)Fe-TiO2, the active rutile phase was followed by isolated amorphous phases which had larger (Eg) and which did not act as a photocatalyst. Thus, the physically adsorbed Fe(III) enhanced light adsorption and avoided charge recombination, resulting in improved photocatalytic performance. The mechanism of the photocatalytic reaction with the Fe(III)-doped Mt/TiO2 composite was proposed

    Fabrication of Adsorbed Fe(III) and Structurally Doped Fe(III) in Montmorillonite/TiO2 Composite for Photocatalytic Degradation of Phenol

    No full text
    The Fe(III)-doped montmorillonite (Mt)/TiO2 composites were fabricated by adding Fe(III) during or after the aging of TiO2/Ti(OH)4 sol&ndash;gel in Mt, named as xFe-Mt/(1 &minus; x)Fe-TiO2 and Fe/Mt/TiO2, respectively. In the xFe-Mt/(1 &minus; x)Fe-TiO2, Fe(III) cations were expected to be located in the structure of TiO2, in the Mt, and in the interface between them, while Fe(III) ions are physically adsorbed on the surfaces of the composites in the Fe/Mt/TiO2. The narrower energy bandgap (Eg) lower photo-luminescence intensity were observed for the composites compared with TiO2. Better photocatalytic performance for phenol degradation was observed in the Fe/Mt/TiO2. The 94.6% phenol degradation was due to greater charge generation and migration capacity, which was confirmed by photocurrent measurements and electrochemical impedance spectroscopy (EIS). The results of the energy-resolved distribution of electron traps (ERDT) suggested that the Fe/Mt/TiO2 possessed a larger amorphous rutile phase content in direct contact with crystal anatase than that of the xFe-Mt/(1 &minus; x)Fe-TiO2. This component is the fraction that is mainly responsible for the photocatalytic phenol degradation by the composites. As for the xFe-Mt/(1 &minus; x)Fe-TiO2, the active rutile phase was followed by isolated amorphous phases which had larger (Eg) and which did not act as a photocatalyst. Thus, the physically adsorbed Fe(III) enhanced light adsorption and avoided charge recombination, resulting in improved photocatalytic performance. The mechanism of the photocatalytic reaction with the Fe(III)-doped Mt/TiO2 composite was proposed

    In-situ synthesis of CN@La(OH)3 nanocomposite for improved the charge separation and enhanced the photocatalytic activity towards Cr(VI) reduction under visible light

    No full text
    In this work, we report for the first time a novel graphitic carbon nitride (CN) composited with different weight percentages (5–15%) of La(OH)3 (CN@La(OH)3) for photocatalytic reduction of hexavalent chromium (Cr(VI)) in aqueous solution. In situ fabrication of the CN@La(OH)3 photocatalysts were carried out via a hydrothermal method. The La(OH)3 nanoparticles were deposited onto the surface of CN nanosheets to form heterojunction, as confirmed by series of techniques. Compared to the pure CN and different weight percentages of CN@La(OH)3 nanocomposite, the CN@La(OH)3(10%) nanocomposite exhibited remarkable photocatalytic reduction performance for Cr(VI) under visible light illumination. Such excellent photocatalytic reduction activity ascribed to the more photocatalytic active sites, high visible light harvesting capacity and improved electron-hole separation and transfer efficiency which was confirmed by photocurrent, impedance and photoluminescence results. The photoreduction efficiency and the reduction rate constant was 98.7% and 0.0263 min−1 within 50 min. A possible reaction mechanism for the effective reduction of carcinogenic Cr(VI) is put forward tentatively. Moreover, the developed CN@La(OH)3(10%) nanocomposite also possessed high structural stability and recyclability after five photocatalytic cycles. This work may open up the way into the robust photocatalysis of Cr(VI) in wastewater treatment application

    Fabrication of Hydrotalcite-like Copper Hydroxyl Salts as a Photocatalyst and Adsorbent for Hexavalent Chromium Removal

    No full text
    Cu-HyS-urea and Cu-HyS-NaOH, which are hydrotalcite-like copper hydroxyl salts, were prepared by two different methods, urea hydrolysis and precipitation, respectively. Both synthesis methods provided the successful formation of a copper hydroxyl salt, Cu2(OH)3NO3. From XRD and UV-DRS results, the product from the urea hydrolysis methods (Cu-HyS-urea) displayed higher crystallinity, small bandgap energy (Eg), and high light absorption ability because of some intercalated carbonate anions. For the Cr(VI) removal test, the Cu-HyS-NaOH showed superior adsorption of Cr(VI) than Cu-HyS-urea due to a higher specific surface area, confirmed by BET analysis. However, the Cu-HyS-urea presented higher photocatalytic Cr(VI) reduction under light irradiation than Cu-HyS-NaOH, owing to narrow Eg, less recombination, and a high transfer of the photogenerated charge carriers, proven by the results from photoluminescence, photocurrent density, and electrochemical impedance spectroscopy. Thus, this work provides a new function of the hydrotalcite-like copper hydroxyl salts (Cu-HyS-urea and Cu-HyS-NaOH) that can be utilized not only for adsorption of Cr(VI) but also as photocatalysts for Cr(VI) reduction under light irradiation
    corecore