62 research outputs found

    Global Waste Management Outlook

    Get PDF
    The Global Waste Management Outlook, a collective effort of the United Nations Environment Programme and the International Waste Management Association, is a pioneering scientific global assessment on the state of waste management and a call for action to the international community. Prepared as a follow up to the Rio+20 Summit and as a response to UNEP Governing Council decision GC 27/12, the document establishes the rationale and the tools for taking a holistic approach towards waste management and recognizing waste and resource management as a significant contributor to sustainable development and climate change mitigation. To complement the Sustainable Development Goals of the Post-2015 Development Agenda, the Outlook sets forth Global Waste Management Goals and a Global Call to Action to achieve those goals

    Review of international development co-operation in solid waste management

    Get PDF

    Connecting climate action with other sustainable development goals

    Get PDF
    The international community has committed to combat climate change and achieve 17 Sustainable Development Goals (SDGs). Here we explore (dis)connections in evidence and governance between these commitments. Our structured evidence review suggests that climate change can undermine 16 SDGs, while combatting climate change can reinforce all 17 SDGs but undermine efforts to achieve 12. Understanding these relationships requires wider and deeper interdisciplinary collaboration. Climate change and sustainable development governance should be better connected to maximize the effectiveness of action in both domains. The emergence around the world of new coordinating institutions and sustainable development planning represents promising progress

    Designing Products for the Circular Economy

    Get PDF
    Until recent years, apparel product design has been undertaken with very little reference to environmental sustainability. However, the legislative framework has increasingly constrained design decisions relating to the use of hazardous chemicals, especially with the advent of REACH regulations within the EU. Most companies now recognise a large number of chemical substances that are prohibited in the dyeing and finishing of textiles. This dominates thinking about design for the environment. The increasing adoption of environmental management systems has expanded the vision for initiatives promoting sustainability, including laundering and care. Principles are recognised for product design and development that lead to more sustainable goods and services. In some industries, regulations require producer to take responsibility for the disposal of products companies release to the market. This obligation has triggered thinking about design for disassembly and design for disposal. This development has accelerated the adoption of circular economy concepts. The EU has not implemented producer responsibility in apparel, although some companies have voluntarily championed circular economy initiatives. However, the business models of most apparel companies have nothing to say about end-of-life issues. This chapter is concerned with new product development processes that incorporate Design for Environment and Design for Disassembly and Disposal. As there are numerous technical issues to address, a team-based product development process has many advantages, whereby garment designers work alongside specialists from other disciplines. This process requires culture change to be embraced by most brand owners, and a departure from the practice of separating the design process from the product development process. In most cases, changes of this nature bring disruption to a globalised industrial sector. Case studies will be considered that illustrate the concepts developed in this chapter. In particular, the French experience of adopting producer responsibility for apparel goods is considered. The accredited organisation ECO TLC exhibits strength in the promotion of sustainability projects, but there is a fundamental weakness in that culture change in the design process of brand owners is hard to discern

    Up-Cycling Waste Glass to Minimal Water Adsorption/Absorption Lightweight Aggregate by Rapid Low Temperature Sintering: Optimization by Dual Process-Mixture Response Surface Methodology

    Get PDF
    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (<10 min) waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm-3; target: 0.9-1.3 g.cm-3). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows

    Cities and waste: Current and emerging issues

    No full text
    • …
    corecore