733 research outputs found

    Ion condensation on charged patterned surfaces

    Full text link
    We study ion condensation onto a patterned surface of alternating charges. The competition between self-energy and ion-surface interactions leads to the formation of ionic crystalline structures at low temperatures. We consider different arrangements of underlying ionic crystals, including single ion adsorption, as well as the formation of dipoles at the interface between charged domains. Molecular dynamic simulation illustrates existence of single and mixed phases. Our results contribute to understanding pattern recognition, and molecular separation and synthesis near patterned surfaces.Comment: 3 figure

    Unusual features in the nonlinear microwave surface impedance of Y-Ba-Cu-O thin films

    Full text link
    Striking features have been found in the nonlinear microwave (8 GHz) surface impedance Zs=Rs+jXsZ_s=R_s + jX_s of high-quality YBaCuO thin films with comparable low power characteristics [Rres3560μΩR_{res}\sim 35--60 \mu\Omega and λL(15K)130260nm\lambda_L(15 K)\sim 130--260 nm]. The surface resistance RsR_s is found to increase, decrease, or remain independent of the microwave field HrfH_{rf} (up to 60 mT) at different temperatures and for different samples. However, the surface reactance XsX_s always follows the same functional form. Mechanisms which may be responsible for the observed variations in RsR_s and XsX_s are briefly discussed.Comment: 4 pages, 4 figure

    Non-linear Microwave Surface Impedance of Epitaxial HTS Thin Films in Low DC Magnetic Fields

    Full text link
    We have carried out non-linear microwave (8 GHz) surface impedance measurements of three YBaCuO thin films in dc magnetic fields HdcH_{dc} (parallel to c axis) up to 12 mT using a coplanar resonator technique. In zero dc field the three films, deposited by the same method, show a spread of low-power residual surface resistance, RresR_{res} and penetration depth, λ\lambda (T=15 K) within a factor of 1.9. However, they exhibit dramatically different microwave field, HrfH_{rf} dependences of the surface resistance, RsR_s, but universal Xs(Hrf)X_s(H_{rf}) dependence. Application of a dc field was found to affect not only absolute values of RsR_s and XsX_s, but the functional dependences Rs(Hrf)R_s(H_{rf}) and Xs(Hrf)X_s(H_{rf}) as well. For some of the samples the dc field was found to decrease RsR_s below its zero-field low-power value.Comment: 4 pages, 4 figures. To be published in IEEE Trans. Appl. Supercond., June 199

    Tunable coaxial cavity resonator for linear and nonlinear microwave characterization of superconducting wires

    Get PDF
    We discuss experimental results obtained using a tunable cylindrical coaxial cavity constituted by an outer Cu cylinder and an inner Pb-BSCCO wire. We have used this device for investigating the microwave response of the superconducting wire, both in the linear and nonlinear regimes. In particular, by tuning the different modes of the cavity to make them resonant at exactly harmonic frequencies, we have detected the power emitted by the superconducting inner wire at the second- and third-harmonic frequency of the driving field. The results obtained in the nonlinear regime, whether for the microwave surface impedance or the harmonic emission, are qualitatively accounted for considering intergrain fluxon dynamics. The use of this kind of device can be of strong interest to investigate and characterise wires of large dimensions to be used for implementing superconducting-based microwave devices.Comment: 14 pages, 6 embedded figures, accepted for publication in Supercond. Sci. Techno

    Heroes and villains of world history across cultures

    Get PDF
    © 2015 Hanke et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedEmergent properties of global political culture were examined using data from the World History Survey (WHS) involving 6,902 university students in 37 countries evaluating 40 figures from world history. Multidimensional scaling and factor analysis techniques found only limited forms of universality in evaluations across Western, Catholic/Orthodox, Muslim, and Asian country clusters. The highest consensus across cultures involved scientific innovators, with Einstein having the most positive evaluation overall. Peaceful humanitarians like Mother Theresa and Gandhi followed. There was much less cross-cultural consistency in the evaluation of negative figures, led by Hitler, Osama bin Laden, and Saddam Hussein. After more traditional empirical methods (e.g., factor analysis) failed to identify meaningful cross-cultural patterns, Latent Profile Analysis (LPA) was used to identify four global representational profiles: Secular and Religious Idealists were overwhelmingly prevalent in Christian countries, and Political Realists were common in Muslim and Asian countries. We discuss possible consequences and interpretations of these different representational profiles.This research was supported by grant RG016-P-10 from the Chiang Ching-Kuo Foundation for International Scholarly Exchange (http://www.cckf.org.tw/). Religion Culture Entropy China Democracy Economic histor

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Electrical Switching in Thin Film Structures Based on Transition Metal Oxides

    Get PDF
    Electrical switching, manifesting itself in the nonlinear current-voltage characteristics with S- and N-type NDR (negative differential resistance), is inherent in a variety of materials, in particular, transition metal oxides. Although this phenomenon has been known for a long time, recent suggestions to use oxide-based switching elements as neuristor synapses and relaxation-oscillation circuit components have resumed the interest in this area. In the present review, we describe the experimental facts and theoretical models, mainly on the basis of the Mott transition in vanadium dioxide as a model object, of the switching effect with special emphasis on the emerging applied potentialities for oxide electronics
    corecore