31 research outputs found

    Induction of osteogenic markers in differentially treated cultures of embryonic stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Facial trauma or tumor surgery in the head and face area often lead to massive destruction of the facial skeleton. Cell-based bone reconstruction therapies promise to offer new therapeutic opportunities for the repair of bone damaged by disease or injury. Currently, embryonic stem cells (ESCs) are discussed to be a potential cell source for bone tissue engineering. The purpose of this study was to investigate various supplements in culture media with respect to the induction of osteogenic differentiation.</p> <p>Methods</p> <p>Murine ESCs were cultured in the presence of LIF (leukemia inhibitory factor), DAG (dexamethasone, ascorbic acid and β-glycerophosphate) or bone morphogenetic protein-2 (BMP-2). Microscopical analyses were performed using von Kossa staining, and expression of osteogenic marker genes was determined by real time PCR.</p> <p>Results</p> <p>ESCs cultured with DAG showed by far the largest deposition of calcium phosphate-containing minerals. Starting at day 9 of culture, a strong increase in collagen I mRNA expression was detected in the DAG-treated cells. In BMP-2-treated ESCs the collagen I mRNA induction was less increased. Expression of osteocalcin, a highly specific marker for osteogentic differentiation, showed a double-peaked curve in DAG-treated cells. ESCs cultured in the presence of DAG showed a strong increase in osteocalcin mRNA at day 9 followed by a second peak starting at day 17.</p> <p>Conclusion</p> <p>Supplementation of ESC cell cultures with DAG is effective in inducing osteogenic differentiation and appears to be more potent than stimulation with BMP-2 alone. Thus, DAG treatment can be recommended for generating ESC populations with osteogenic differentiation that are intended for use in bone tissue engineering.</p

    The effect of modified bacterial virulence to host-pathogen relationship (Phaseolus vulgaris L. Pseudomonas savastanoi pv. phaseolicola)

    No full text
    The Pseudomonas savastanoi pv. phaseolicola is one of the most expressive biogen stressors of the bean (Phaseolus vulgaris L.) in Hungary. The chemical and agrotechnological defence is inefficient, so breeding is the only workable way. The conventional cultivars are susceptible to PS while most of the new industrial varieties have genetic resistance to the pathogen. The genetic background of resistance is, however, a complex system in the bean. Leaf resistance is a monogenic system, but this gene is not expressed in juvenile stage of the host. The pathogen species can be divided into different races. After inoculation with virulent strains, typical symptoms appeared on the leaves. To understand the details of host-pathogen relationships, there were carried out experiments using bacterial strains with altered virulence. Six transposon mutants of the PS were tested. Our main objective was to test these modified bacterial strains on bean cultivars of known genetic background. First we analysed the symptoms, and then the correlation between the symptoms and the multiplication of mutant bacteria. Three cultivars (Cherokee, Inka and Főnix) were tested. The infection by the virulent PS isolate produced typical symptoms on the three cultivars tested. Mutant bacteria (except strain 756) did not cause any significant symptoms on the hosts. The mutant 756 induced visible symptoms on the cultivars Cherokee and Inka. On Cherokee there were small watersoaked lesions, and HR (hypersensitivity reaction) was detected on Inka, but this was restricted to some cells only (mikro HR). The rate of multiplication of the wild type strain was much higher than the multiplication of the mutants. Bacteria were detected in the cotyledons and primordial leaf, but there is not any substantial number of bacteria in leaves, except for strains 757, 1212 and 1213. The rate of multiplication of strain 756 was intermediate. These, and other experiments can help to understand the genetic background of resistance and the host-pathogen relationship in the Pseudomonas-bean pathosystem. &nbsp

    The effect of modified bacterial virulence to host-pathogen relationship (Phaseolus vulgaris L. Pseudomonas savastanoi pv. phaseolicola)

    No full text
    The Pseudomonas savastanoi pv. phaseolicola is one of the most expressive biogen stressors of the bean (Phaseolus vulgaris L.) in Hungary. The chemical and agrotechnological defence is inefficient, so breeding is the only workable way. The conventional cultivars are susceptible to PS while most of the new industrial varieties have genetic resistance to the pathogen. The genetic background of resistance is, however, a complex system in the bean. Leaf resistance is a monogenic system, but this gene is not expressed in juvenile stage of the host. The pathogen species can be divided into different races. After inoculation with virulent strains, typical symptoms appeared on the leaves. To understand the details of host-pathogen relationships, there were carried out experiments using bacterial strains with altered virulence. Six transposon mutants of the PS were tested. Our main objective was to test these modified bacterial strains on bean cultivars of known genetic background. First we analysed the symptoms, and then the correlation between the symptoms and the multiplication of mutant bacteria. Three cultivars (Cherokee, Inka and Főnix) were tested. The infection by the virulent PS isolate produced typical symptoms on the three cultivars tested. Mutant bacteria (except strain 756) did not cause any significant symptoms on the hosts. The mutant 756 induced visible symptoms on the cultivars Cherokee and Inka. On Cherokee there were small watersoaked lesions, and HR (hypersensitivity reaction) was detected on Inka, but this was restricted to some cells only (mikro HR). The rate of multiplication of the wild type strain was much higher than the multiplication of the mutants. Bacteria were detected in the cotyledons and primordial leaf, but there is not any substantial number of bacteria in leaves, except for strains 757, 1212 and 1213. The rate of multiplication of strain 756 was intermediate. These, and other experiments can help to understand the genetic background of resistance and the host-pathogen relationship in the Pseudomonas-bean pathosystem. &nbsp

    Changing of carbohydrates by inoculation of Pseudomonas savastanoi pv. phaseolicola oil bean lines with different resistance

    No full text
    The Pseudomonas savastanoi pv. phaseolicola (PS) is one of the most significant stressors of bean (Phaseolus vulgaris L.). Chemical and agrotechnical treatments have minor importance, so breeding has great part in the protection against this pathogen. Most of the cultivars are susceptible to PS. The genetic background of resistance in the plant is a complex system. Leaf resistance is a monogenic system, but there are some modifier genes. The pathogen species can be divided into different races. To understand the functioning of this resistance gene, experiments were carried out using bean varieties with different genotypes and near isogenic lines of bean. Eight lines were tested. Our main objective was to test bean lines with PS with high virulence. The experiment was made in greenhouse and on field. The virulent bacterium strain has been isolated in Hungary. The changes of carbohydrates were tested after infection. In homeostasis the level of carbohydrates (especially glucose and fructose) were higher in susceptible lines. In case of artificial and natural infection the decrease of glucose were more significant in susceptible lines than in resistant lines. In the leaf samples from systemic chlorosis the level of this carbohydrate increased. These changes are connected with the level of resistance, but more experiments are needed to verify this assumption

    Comparative study of β-tricalcium phosphate mixed with platelet-rich plasma versus β-tricalcium phosphate, a bone substitute material in dentistry

    No full text
    Animal experiments were carried out with osteoconductive bone substitute β-tricalcium phosphate (β-TCP), with the aim of assessing the effects of the growth factors synthesised by thrombocytes on the speed of β-TCP incorporation and on the quality of newly formed bone. The question to be answered was the extent to which platelet-rich plasma (PRP) accelerated the resorption of β-TCP and the formation of new bone. Two teeth were removed symmetrically from each side of the mandible of 12 Beagle dogs; the resulting cavities were filled on one side with β-TCP alone, and on the other side with a mixture of β-TCP + PRP (obtained from autologous blood). The quality of the newly formed bone and the effects of this PRP were studied by histological and histomorphometric methods. In week 6, bone formation was already more effective when PRP was applied in comparison with β-TCP alone, and in week 12 the growth was significantly greater. The results demonstrate that the use of PRP accelerates the remodelling of new bone created by β-TCP

    Changing of carbohydrates by inoculation of Pseudomonas savastanoi pv. phaseolicola oil bean lines with different resistance

    No full text
    The Pseudomonas savastanoi pv. phaseolicola (PS) is one of the most significant stressors of bean (Phaseolus vulgaris L.). Chemical and agrotechnical treatments have minor importance, so breeding has great part in the protection against this pathogen. Most of the cultivars are susceptible to PS. The genetic background of resistance in the plant is a complex system. Leaf resistance is a monogenic system, but there are some modifier genes. The pathogen species can be divided into different races. To understand the functioning of this resistance gene, experiments were carried out using bean varieties with different genotypes and near isogenic lines of bean. Eight lines were tested. Our main objective was to test bean lines with PS with high virulence. The experiment was made in greenhouse and on field. The virulent bacterium strain has been isolated in Hungary. The changes of carbohydrates were tested after infection. In homeostasis the level of carbohydrates (especially glucose and fructose) were higher in susceptible lines. In case of artificial and natural infection the decrease of glucose were more significant in susceptible lines than in resistant lines. In the leaf samples from systemic chlorosis the level of this carbohydrate increased. These changes are connected with the level of resistance, but more experiments are needed to verify this assumption
    corecore