15 research outputs found
Superplastična deformacija Al-Al4C3 kompozita
Deformation of the Al-Al4C3 composites with different volume fraction of Al-Al4C3 phase was investigated at different temperatures (293 - 723 K) and different strain rates (2,5 * 10-5 s-1 do 1,0 * 10-1 s-1). At temperatures 673 - 723 K and at the highest strain rate of 1,0 * 10-1 s-1, a significant ductility increase was observed. TEM analysis suggests the onset of superplasticity may be the result of dynamic grain polygonization, grain slip and rotation, partial recrystallization and dislocation creep in the tested system, which is known as strain induced dynamic recovery. Increase of the volume fraction of secondary phase in the studied composite resulted in a shift from slip on grain boundaries controlled mechanism to the grain rotation controlled deformation mechanism.Istraživana je deformacija Al-Al4C3 kompozita različitog volumnog udjela Al-Al4C3 faze kod različitih temperatura (od 293 do 723 K) i brzina deformacije (od 2,5 * 10-5 s-1 do 1,0 * 10-1 s-1). Kod temperatura od 673 do 723 K i najviše brzine deformacije od 1,0 * 10-1 s-1 zapaženo je značajno povećanje kovkosti. TEM analiza ukazuje da početak superplastičnosti može biti rezultat dinamičke poligonizacije zrna, klizanja i rotacije zrna, djelomične rekristalizacije i puzanja dislokacija u istraživanom sustavu, što je poznato kao deformacijom inducirano dinamičko oporavljanje. Porast volumnog udjela sekundarne faze u istraživanom kompozitu rezultirao je promjenom kontrolnog mehanizma deformacije od klizanja po granicama zrna do rotacije zrna
Microstructural Characteristics of Dispersion Strengthned Cu-based System
An example of application of the proposed improved procedure for grain size estimation to a real dispersion strengthned material
Possibilities Of Metals Extracton From Spent Metallic Automotive Catalytic Converters By Using Biometallurgical Method
The main task of automotive catalytic converters is reducing the amount of harmful components of exhaust gases. Metallic catalytic converters are an alternative to standard ceramic catalytic converters. Metallic carriers are usually made from FeCrAl steel, which is covered by a layer of Precious Group Metals (PGMs) acting as a catalyst. There are many methods used for recovery of platinum from ceramic carriers in the world, but the issue of platinum and other metals recovery from metallic carriers is poorly described. The article presents results of preliminary experiments of metals biooxidation (Fe, Cr and Al) from spent catalytic converters with metallic carrier, using bacteria of the Acidithiobacillus genus
Characteristics of Silver Nanoparticles in Different pH Values
Stability of silver nanoparticles strongly influences the potential of their application. The literature shows wide possibilities
of nanoparticles preparation, which has significantly impact on their properties. Therefore, the improvement of AgNPs preparation
plays a key role in the case of their practical use. The pH values of the environment are one of the important factors, which
directly influences stability of AgNPs. We present a comparing study of the silver nanoparticles prepared by „bottom-up“ methods
over by chemical synthesis and biosynthesis using AgNO3 (0.29 mM) solution. For the biosynthesis of the silver nanoparticles,
the green freshwater algae Parachlorella kessleri and Citrus limon extracts were used as reducing and stabilizing agents. Chemically
synthesized AgNPs were performed using sodium citrate (0.5%) as a capping agent and 0.01% gelatine as a reducing agent.
The formation and long term stability of those silver nanoparticles synthesized either biologically and chemically were clearly
observed by solution colour changes and confirmed by UV-vis spectroscopy. The pH values of formed nanoparticle solutions were
3 and 5.8 for biosynthesized AgNPs using extract of Citrus limon and Parachlorella kessleri, respectively and 7.2 for chemically
prepared AgNPs solution using citrate. The SEM as a surface imaging method was used for the characterization of nanoparticle
shapes, size distribution and also for resolving different particle sizes. These micrographs confirmed the presence of dispersed and
aggregated AgNPs with various shapes and sizes
Możliwości wykorzystania metod biometalurgicznych do ekstrakcji metali ze zużytych metalowych katalizatorów samochodowych
he main task of automotive catalytic converters is reducing the amount of harmful components of exhaust gases. Metallic catalytic converters are an alternative to standard ceramic catalytic converters. Metallic carriers are usually made from FeCrAl steel, which is covered by a layer of Precious Group Metals (PGMs) acting as a catalyst. There are many methods used for recovery of platinum from ceramic carriers in the world, but the issue of platinum and other metals recovery from metallic carriers is poorly described. The article presents results of preliminary experiments of metals biooxidation (Fe, Cr and Al) from spent catalytic converters with metallic carrier, using bacteria of the Acidithiobacillus genus.Głównym zadaniem katalizatorów samochodowych jest zmniejszenie ilości szkodliwych składników spalin. Katalizatory na nośniku metalowym są alternatywą dla standardowych katalizatorów na nośniku ceramicznym. Nośniki metalowe najczęściej wykonuje się ze stali FeCrAl, na którą nieniesiona jest warstwa platynowców, pełniących funkcje katalityczne. W pracy przedstawiono wyniki wstępnych prób bioutleniania metali ze zużytych katalizatorów na nośniku metalowym (Fe, Cr, Al.), z udziałem bakterii z rodzaju Acidithiobacillus
Influence of Al₂O₃ Particles Weight Fraction on Fracture Mechanism of AZ61 Mg-Al₂O₃ System Studied by In Situ Tensile Test in SEM
In situ observation of AZ61 Mg alloy with 1 and 5 wt% of Al₂O₃ in the scanning electron microscopy was performed to study influence of the weight fraction of Al₂O₃ particles on the deformation and fracture mechanism during tensile test. Structure of the experimental materials was also analysed; microstructures were heterogeneous, with randomly distributed globular Al₂O₃ particles (average diameter of 25 nm) and Mg₁₇Al₁₂ intermetallic phase (average diameter of 0.4 μ m). It was shown that during tensile deformation the failure of Mg₁₇Al₁₂ particles and decohesion of the matrix-Al₂O₃ particles interphase boundary started simultaneously. Decohesion resulted from the different physical properties of matrix and Al₂O₃ particles. The influence of the Al₂O₃ weight fraction on the final fracture was evident; for material with 5 wt% of Al₂O₃, the fracture surface was approximately perpendicular to the loading direction and for material with 1 wt% of Al₂O₃ was at 45° angle. Fracture surface had transcrystalline ductile character
The Effect of Specific Conditions on Cu, Ni, Zn and Al Recovery from PCBS Waste Using Acidophilic Bacterial Strains
The objective of this work was to evaluate the influence of static, stirring and shaking conditions on copper, zinc, nickel and aluminium dissolution from printed circuit boards (PCBs) using the mixed acidophilic bacterial culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The results revealed that static conditions were the most effective in zinc and aluminium dissolution. Zinc was removed almost completely under static conditions, whereas maximum of nickel dissolution was reached under the stirring conditions. The highest copper recovery (36%) was reached under stirring conditions. The shaking conditions appeared to be the least suitable. The relative importance of these systems for the bioleaching of copper and nickel decreased in the order: stirring, static conditions, shaking
Dissolution of Metal Supported Spent Auto Catalysts in Acids
Metal supported auto catalysts, have been used in sports and racing cars initially, but nowadays their application systematically increases. In Metal Substrate (supported) Converters (MSC), catalytic functions are performed by the Platinum Group Metals (PGM): Pt, Pd, Rh, similarly to the catalysts on ceramic carriers. The contents of these metals make that spent catalytic converters are valuable source of precious metals. All over the world there are many methods for the metals recovery from the ceramic carriers, however, the issue of platinum recovery from metal supported catalysts has not been studied sufficiently yet. The paper presents preliminary results of dissolution of spent automotive catalyst on a metal carrier by means of acids: H2SO4, HCl, HNO3, H3PO4. The main assumption of the research was the dissolution of base metals (Fe, Cr, Al) from metallic carrier of catalyst, avoiding dissolution of PGMs. Dissolution was the most effective when concentrated hydrochloric acid, and 2M sulfuric acid (VI) was used. It was observed that the dust, remaining after leaching, contained platinum in the level of 0.8% and 0.7%, respectively
The Effect of Specific Conditions on Cu, Ni, Zn and Al Recovery from PCBS Waste Using Acidophilic Bacterial Strains
The objective of this work was to evaluate the influence of static, stirring and shaking conditions on copper, zinc, nickel and aluminium dissolution from printed circuit boards (PCBs) using the mixed acidophilic bacterial culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The results revealed that static conditions were the most effective in zinc and aluminium dissolution. Zinc was removed almost completely under static conditions, whereas maximum of nickel dissolution was reached under the stirring conditions. The highest copper recovery (36%) was reached under stirring conditions. The shaking conditions appeared to be the least suitable. The relative importance of these systems for the bioleaching of copper and nickel decreased in the order: stirring, static conditions, shaking