17 research outputs found

    Defining consensus leukemia-associated immunophenotypes for detection of minimal residual disease in acute myeloid leukemia in a multicenter setting.

    No full text
    Flow-cytometric detection of minimal residual disease (MRD) has proven in several single-institute studies to have an independent prognostic impact. We studied whether this relatively complex approach could be performed in a multicenter clinical setting. Five centers developed common protocols to accurately define leukemia-associated (immuno)phenotypes (LAPs) at diagnosis required to establish MRD during/after treatment. List mode data files were exchanged, and LAPs were designed by each center. One center, with extensive MRD experience, served as the reference center and coordinator. In quarterly meetings, consensus LAPs were defined, with the performance of centers compared with these. In a learning (29 patients) and a test phase (35 patients), a mean of 2.2 aberrancies/patient was detected, and only 1/63 patients (1.6%) had no consensus LAP(s). For the four centers without (extensive) MRD experience, clear improvement could be shown: in the learning phase, 39-63% of all consensus LAPs were missed, resulting in a median 30% of patients (range 21-33%) for whom no consensus LAP was reported; in the test phase, 27-40% missed consensus LAPs, resulting in a median 16% (range 7-18%) of 'missed' patients. The quality of LAPs was extensively described. Immunophenotypic MRD assessment in its current setting needs extensive experience and should be limited to experienced centers

    Late recurrence of childhood T-cell acute lymphoblastic leukemia frequently represents a second leukemia rather than a relapse: first evidence for genetic predisposition

    No full text
    Item does not contain fulltextPURPOSE: Relapse of childhood T-cell acute lymphoblastic leukemia (T-ALL) often occurs during treatment, but in some cases, leukemia re-emerges off therapy. On the basis of previous analyses of T-cell receptor (TCR) gene rearrangement patterns, we hypothesized that some late recurrences of T-ALL might in fact represent second leukemias. PATIENTS AND METHODS: In 22 patients with T-ALL who had late relapses (at least 2.5 years from diagnosis), we studied TCR gene rearrangement status at first and second presentation, NOTCH1 gene mutations, and the presence of the SIL-TAL1 gene fusion. We performed genome-wide copy number and homozygosity analysis by using oligonucleotide- and single nucleotide polymorphism (SNP) -based arrays. RESULTS: We found evidence of a common clonal origin between diagnosis and relapse in 14 patients (64%). This was based on concordant TCR gene rearrangements (12 patients) or concordant genetic aberrations, as revealed by genome-wide copy number analysis (two patients). In the remaining eight patients (36%), TCR gene rearrangement sequences had completely changed between diagnosis and relapse, and gene copy number analysis showed markedly different patterns of genomic aberrations, suggesting a second T-ALL rather than a resurgence of the original clone. Moreover, NOTCH1 mutation patterns were different at diagnosis and relapse in five of these eight patients. In one patient with a second T-ALL, SNP analysis revealed a germline del(11)(p12;p13), a known recurrent aberration in T-ALL. CONCLUSION: More than one third of late T-ALL recurrences are, in fact, second leukemias. Germline genetic abnormalities might contribute to the susceptibility of some patients to develop T-ALL

    Multicenter prospective evaluation of diagnostic potential of flow cytometric aberrancies in myelodysplastic syndromes by the ELN iMDS flow working group.

    No full text
    BACKGROUND: Myelodysplastic syndromes (MDS) represent a diagnostic challenge. This prospective multicenter study was conducted to evaluate pre-defined flow cytometric markers in the diagnostic work-up of MDS and chronic myelomonocytic leukemia (CMML). METHODS: Thousand six hundred and eighty-two patients with suspected MDS/CMML were analyzed by both cytomorphology according to WHO 2016 criteria and flow cytometry according to ELN recommendations. Flow cytometric readout was categorized 'non-MDS' (i.e. no signs of MDS/CMML and limited signs of MDS/CMML) and 'in agreement with MDS' (i.e., in agreement with MDS/CMML). RESULTS: Flow cytometric readout categorized 60% of patients in agreement with MDS, 28% showed limited signs of MDS and 12% had no signs of MDS. In 81% of cases flow cytometric readouts and cytomorphologic diagnosis correlated. For high-risk MDS, the level of concordance was 92%. A total of 17 immunophenotypic aberrancies were found independently related to MDS/CMML in ≥1 of the subgroups of low-risk MDS, high-risk MDS, CMML. A cut-off of ≥3 of these aberrancies resulted in 80% agreement with cytomorphology (20% cases concordantly negative, 60% positive). Moreover, >3% myeloid progenitor cells were significantly associated with MDS (286/293 such cases, 98%). CONCLUSION: Data from this prospective multicenter study led to recognition of 17 immunophenotypic markers allowing to identify cases 'in agreement with MDS'. Moreover, data emphasizes the clinical utility of immunophenotyping in MDS diagnostics, given the high concordance between cytomorphology and the flow cytometric readout. Results from the current study challenge the application of the cytomorphologically defined cut-off of 5% blasts for flow cytometry and rather suggest a 3% cut-off for the latter

    EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes.

    Get PDF
    International audienceMost consensus leukemia & lymphoma antibody panels consist of lists of markers based on expert opinions, but they have not been validated. Here we present the validated EuroFlow 8-color antibody panels for immunophenotyping of hematological malignancies. The single-tube screening panels and multi-tube classification panels fit into the EuroFlow diagnostic algorithm with entries defined by clinical and laboratory parameters. The panels were constructed in 2-7 sequential design-evaluation-redesign rounds, using novel Infinicyt software tools for multivariate data analysis. Two groups of markers are combined in each 8-color tube: (i) backbone markers to identify distinct cell populations in a sample, and (ii) markers for characterization of specific cell populations. In multi-tube panels, the backbone markers were optimally placed at the same fluorochrome position in every tube, to provide identical multidimensional localization of the target cell population(s). The characterization markers were positioned according to the diagnostic utility of the combined markers. Each proposed antibody combination was tested against reference databases of normal and malignant cells from healthy subjects and WHO-based disease entities, respectively. The EuroFlow studies resulted in validated and flexible 8-color antibody panels for multidimensional identification and characterization of normal and aberrant cells, optimally suited for immunophenotypic screening and classification of hematological malignancies
    corecore