9 research outputs found

    Magnetoresistance based determination of basic parameters of minority charge carriers in solid matter

    Full text link
    Magnetoresistance as a tool of basic parameters determination of minority charge carriers and the ratio of minority charge carriers conductivity to majority ones in solid matter has been considered within the framework of the phenomenological two-band model. The criterion of the application of this model has been found. As examples of these equations usage the conductor, semiconductor and superconductor have been introduced. From the obtained temperature dependences of the aforementioned values in superconductor, a supposition of a deciding role of minority charge carriers in the emergence of superconductivity state has been made.Comment: 7 pages, 3 figures, 2 table

    Повышение коэффициента полезного действия солнечных энергетических установок за счет локализации солнечной энергии

    Get PDF
    The article presents an analysis of the state of development of solar energy in Europe and  the  Republic  of  Belarus  for 2020.  An algorithm for increasing the efficiency factor of  solar power plants by localizing the solar trajectory depending on the latitude and longitude of the area has been proposed. In particular, taking into account the angle of the Sun position above the horizon and the azimuth angle of the Sun, the increase in the efficiency factor of solar power plants for the Republic of Belarus is calculated. Based on this algorithm, a program has been written that makes it possible to draw a diagram of the solar trajectory. An analysis has been made of the degree of localization of solar energy for solstice days in 6 oblast (regional) centers of the Republic of Belarus; it is found that the highest intensity of solar radiation is observed in Brest and Gomel, the average in Grodno, Minsk and Mogilev, while the lowest one – in the city of Vitebsk. A comparative analysis of the solar trajectory of the city of Berlin (Germany) with the city of Gomel and the city of Brest is carried out. Recommendations have been developed for the effective operation of solar power plants in the oblast (regional) cities of the Republic of Belarus during the year in an autonomous and combined mode of operation. The obtained numerical calculations of the solar trajectory make it possible to optimize the orientation of solar panels for permanently installed panels and for automated solar tracking systems, as well as to select the optimal configuration of the power plant equipment for any geographic area.В статье представлен анализ развития солнечной энергетики в странах Европы и Республике Беларусь в 2020 г. Предложен алгоритм повышения коэффициента полезного действия для солнечных энергетических установок (СЭУ) за счет локализации солнечной траектории в зависимости от широты и долготы местности. В частности, с учетом угла положения Солнца над горизонтом и угла азимута Солнца рассчитано повышение КПД СЭУ для Республики Беларусь. На основе данного алгоритма написана программа, позволяющая построить диаграмму солнечной траектории. Проведен анализ степени локализации солнечной энергии для дней солнцестояния в шести белорусских областных центрах. Выявлено, что самая высокая интенсивность солнечного излучения наблюдается в Бресте и Гомеле, средняя – в Гродно, Минске и Могилеве, низкая – в Витебске. Проведен сравнительный анализ солнечных траекторий для Берлина (Германия), Гомеля и Бреста. Разработаны рекомендации для эффективной работы СЭУ в течение года в автономном и комбинированном режимах в областных городах Республики Беларусь. Полученные численные расчеты солнечной траектории позволяют проводить оптимизацию ориентации солнечных панелей для стационарно установленных панелей и автоматизированных систем слежения за Солнцем, а также подбор оптимальной комплектации оборудования энергетической установки для любой географической местности

    Математическая модель системы управления мобильным гусеничным роботом с учетом кинематических и динамических параметров

    Get PDF
    The paper developed a mathematical model of the control system for a mobile tracked robot, which takes into account the kinematic parameters (angular speeds of rotation of the rollers and the center of mass of the robot, the linear speed of the robot and its angle of rotation relative to the normal to the axis) and dynamic parameters (moments of inertia, resistance forces and electromechanical parameters used electric motors), which made it possible to give the most complete mathematical representation of the description of the movement of a caterpillar mobile robot. A control system for mobile robots along a predetermined trajectory is obtained, taking into account position feedback.В работе разработана математическая модель системы управления мобильным гусеничным роботом, которая учитывает кинематические параметры (угловые скорости вращения катков и центра масс робота, линейную скорость передвижения робота и угол его поворота относительно нормали к оси) и динамические параметры (моменты инерции, усилия сопротивления и электромеханические параметры применяемых электродвигателей), что позволило дать наиболее полное математическое представление описания движения гусеничного мобильного робота. Получена система управления мобильными роботами по заранее заданной траектории с учетом обратных связей по положению

    Моделирование системы управления гусеничным мобильным роботом с учетом кинематических и динамических параметров

    Get PDF
    The paper examines the problem of constructing a motion control system for autonomous mobile tracked robots in an informal external environment. Based on the proposed mathematical model of the control system for a tracked mobile robot, which takes into account kinematic and dynamic parameters, simulation modeling of a tracked mobile robot was carried out in the dynamic modeling environments of technical systems MATLAB Simulink and SimInTech, which made it possible to control the coordinates of a tracked mobile robot along a predetermined trajectory with a certain accuracy. To increase the stability of the mobile robot motion control system, a PID controller of the armature current and electromagnetic torque was introduced into it. During the simulation study, graphical dependences on time were obtained: supply voltage; rotation angle of the robot body; track speeds; motor armature current; electromagnetic torque of engines; armature current of motors with PID controller; the path traveled by the caterpillars; electromagnetic torque of motors with a PID controller, and also the center of mass of the robot was set when setting a trajectory with a radius of 10 m for 6.2 s. Models were built in the MATLAB Simulink software package: general simulation, kinematic simulation and dynamic simulation of a tracked mobile robot, simulation subsystem of the electric drive control unit. In the SimInTech software environment, a simulation model of the dynamic part of the right electric drive of a tracked mobile robot was obtained. A comparative analysis of the graphical dependencies of the angular velocity of the roller and armature current of the motor of a tracked mobile robot, obtained in the MATLAB Simulink and SimInTech packages, was carried out, which revealed a number of advantages and disadvantages when testing the operation of the control system of a tracked mobile robot in an unformalized external environment.В работе рассмотрена задача построения системы управления движением автономных мобильных гусеничных роботов в неформализованной внешней среде. На основе предложенной математической модели системы управления гусеничным мобильным роботом, учитывающей кинематические и динамические параметры, проведено имитационное моделирование гусеничного мобильного робота в средах динамического моделирования технических систем MATLAB Simulink и SimInTech, что позволило с определенной точностью управлять координатами гусеничного мобильного робота по заранее заданной траектории. Для повышения устойчивости системы управления движением мобильного робота в нее был внедрен ПИД-регулятор тока якоря и электромагнитного момента. В ходе имитационного исследования получены графические зависимости от времени: напряжения питания; угла поворота корпуса робота; скорости гусениц; тока якоря двигателей; электромагнитного момента двигателей; тока якоря двигателей с ПИД-регулятором; пройденного гусеницами пути; электромагнитного момента двигателей с ПИД-регулятором, а также проводилось задание центра масс робота при задании траектории радиусом 10 м в течение 6,2 с. В программном пакете MATLAB Simulink построены модели: общая имитационная, имитационная кинематическая и имитационная динамическая гусеничного мобильного робота, имитационная подсистема блока управления электроприводами. В программной среде SimInTech получена имитационная модель динамической части правого электропривода гусеничного мобильного робота. Проведен сравнительный анализ графических зависимостей угловой скорости катка и тока якоря двигателя гусеничного мобильного робота, полученных в пакетах MATLAB Simulink и SimInTech, который выявил ряд достоинств и недостатков при проверке работы системы управления гусеничным мобильным роботом в неформализованной внешней среде

    Система интеллектуального светодиодного освещения

    Get PDF
    The article presents the development of an intelligent control system for LED lighting, applicable to autonomous electric lighting installations, outdoor lighting fixtures on posts to illuminate highways, roads, streets and surrounding areas. The system combines all local lighting systems in which the motion sensor and the LED luminaire are integrated into one network. Turning on the LED luminaire at reduced power is carried out automatically when the level of external natural light is less than a certain threshold value. In the case of appearance of an object moving along the motion sensors of neighboring local lighting systems, the speed and direction of movement of the object are determined. In accordance to the speed and direction of the object movement the number of local lighting systems is determined whose LED lamps should be switched on at a higher power and the appearance of the object at the next design point is predicted. The increase in the power of LED lamps is carried out smoothly when the object is approaching the corresponding local lighting system. Due to the dynamic control of the power of the LED luminaires, as moving objects appear in the coverage area of the intelligent lighting system, significant energy savings are achieved. Traffic safety conditions are increased, as the number of LED lamps operating with increased power is determined by the speed of the object, and its possible braking distance will be significantly less than the illuminated section of the roadway. Smooth changes in the power of LED lamps reduce the pressure on the driver of the vehicle. The choice of the motion sensor based on the autodyne radio blocking, which detects moving objects in a given sector of the controlled space, regardless of the time of day and weather conditions, is grounded.. В статье представлена интеллектуальная система управления светодиодным освещением, применимая к автономным электроосветительным установкам, светильникам наружного освещения на столбах, предназначенным для освещения автомагистралей, дорог, улиц и прилегающих территорий. Она объединяет все локальные системы освещения, в которых датчик движения и светодиодный светильник интегрированы в одну сеть. Включение светодиодного светильника на пониженную мощность осуществляется автоматически при снижении уровня внешнего естественного освещения ниже определенного порогового. В случае появления движущегося объекта вдоль датчиков соседних локальных систем освещения определяются скорость и направление его движения. По ним определяется количество локальных осветительных систем, светодиодные светильники которых должны быть включены на более высокую мощность, и устанавливается прогнозируемое появление объекта в очередной расчетной точке. Увеличение мощности светодиодных светильников осуществляется плавно, когда объект приближается к соответствующей локальной осветительной системе. За счет динамического управления мощностью светодиодных светильников по мере появления в зоне действия интеллектуальной системы освещения движущихся объектов достигается существенная экономия электрической энергии. Обеспечиваются условия безопасности дорожного движения, поскольку количество светодиодных светильников, работающих с повышенной мощностью, определяется скоростью объекта и его возможный тормозной путь будет существенно меньше освещаемого участка проезжей части. Плавные изменения мощности светодиодных светильников снижают нагрузку на водителя транспортного средства. Пояснен выбор датчика движения на основе автодинного радиоблокирования, обнаруживающего движущиеся объекты в заданном секторе контролируемого пространства независимо от времени суток и погодных условий

    Mekhanizm analiza vkhodjashhego Internet trafika na naliche ugroz

    No full text

    Intelligent LED Lighting System

    Get PDF
    The article presents the development of an intelligent control system for LED lighting, applicable to autonomous electric lighting installations, outdoor lighting fixtures on posts to illuminate highways, roads, streets and surrounding areas. The system combines all local lighting systems in which the motion sensor and the LED luminaire are integrated into one network. Turning on the LED luminaire at reduced power is carried out automatically when the level of external natural light is less than a certain threshold value. In the case of appearance of an object moving along the motion sensors of neighboring local lighting systems, the speed and direction of movement of the object are determined. In accordance to the speed and direction of the object movement the number of local lighting systems is determined whose LED lamps should be switched on at a higher power and the appearance of the object at the next design point is predicted. The increase in the power of LED lamps is carried out smoothly when the object is approaching the corresponding local lighting system. Due to the dynamic control of the power of the LED luminaires, as moving objects appear in the coverage area of the intelligent lighting system, significant energy savings are achieved. Traffic safety conditions are increased, as the number of LED lamps operating with increased power is determined by the speed of the object, and its possible braking distance will be significantly less than the illuminated section of the roadway. Smooth changes in the power of LED lamps reduce the pressure on the driver of the vehicle. The choice of the motion sensor based on the autodyne radio blocking, which detects moving objects in a given sector of the controlled space, regardless of the time of day and weather conditions, is grounded
    corecore