1,763 research outputs found

    One-dimensional quantum walks with one defect

    Full text link
    The CGMV method allows for the general discussion of localization properties for the states of a one-dimensional quantum walk, both in the case of the integers and in the case of the non negative integers. Using this method we classify, according to such localization properties, all the quantum walks with one defect at the origin, providing explicit expressions for the asymptotic return probabilities at the origin

    Classification of life by the mechanism of genome size evolution

    Full text link
    The classification of life should be based upon the fundamental mechanism in the evolution of life. We found that the global relationships among species should be circular phylogeny, which is quite different from the common sense based upon phylogenetic trees. The genealogical circles can be observed clearly according to the analysis of protein length distributions of contemporary species. Thus, we suggest that domains can be defined by distinguished phylogenetic circles, which are global and stable characteristics of living systems. The mechanism in genome size evolution has been clarified; hence main component questions on C-value enigma can be explained. According to the correlations and quasi-periodicity of protein length distributions, we can also classify life into three domains.Comment: 53 pages, 9 figures, 2 table

    Asymmetric supernova remnants generated by Galactic, massive runaway stars

    Full text link
    After the death of a runaway massive star, its supernova shock wave interacts with the bow shocks produced by its defunct progenitor, and may lose energy, momentum, and its spherical symmetry before expanding into the local interstellar medium (ISM). We investigate whether the initial mass and space velocity of these progenitors can be associated with asymmetric supernova remnants. We run hydrodynamical models of supernovae exploding in the pre-shaped medium of moving Galactic core-collapse progenitors. We find that bow shocks that accumulate more than about 1.5 Mo generate asymmetric remnants. The shock wave first collides with these bow shocks 160-750 yr after the supernova, and the collision lasts until 830-4900 yr. The shock wave is then located 1.35-5 pc from the center of the explosion, and it expands freely into the ISM, whereas in the opposite direction it is channelled into the region of undisturbed wind material. This applies to an initially 20 Mo progenitor moving with velocity 20 km/s and to our initially 40 Mo progenitor. These remnants generate mixing of ISM gas, stellar wind and supernova ejecta that is particularly important upstream from the center of the explosion. Their lightcurves are dominated by emission from optically-thin cooling and by X-ray emission of the shocked ISM gas. We find that these remnants are likely to be observed in the [OIII] lambda 5007 spectral line emission or in the soft energy-band of X-rays. Finally, we discuss our results in the context of observed Galactic supernova remnants such as 3C391 and the Cygnus Loop.Comment: 21 pages, 16 figure

    Origin of the bilateral structure of the supernova remnant G296.5+10

    Get PDF
    In this work, we have modelled the supernova remnant (SNR) G296.5+10, by means of 3D magnetohydrodynamics (MHD) simulations. This remnant belongs to the bilateral SNR group and has an additional striking feature: the rotation measure (RM) in its eastern and western parts are very different. In order to explain both the morphology observed in radio-continuum and the RM, we consider that the remnant expands into a medium shaped by the superposition of the magnetic field of the progenitor star with a constant Galactic magnetic field. We have also carried out a polarization study from our MHD results, obtaining synthetic maps of the linearly polarized intensity and the Stokes parameters. This study reveals that both the radio morphology and the reported RM for G296.5+10 can be explained if the quasi-parallel acceleration mechanism is taking place in the shock front of this remnant.Fil: Moranchel-Basurto, A.. Universidad Nacional Autónoma de México; MéxicoFil: Velazquez, P.. Universidad Nacional Autónoma de México; MéxicoFil: Giacani, Elsa Beatriz. Universidad de Buenos Aires. Facultad de Arquitectura y Urbanismo; Argentina. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Toledo Roy, J. C.. Universidad Nacional Autónoma de México; MéxicoFil: Schneiter, E.. Universidad Nacional Autónoma de México; MéxicoFil: De Colle, F.. Universidad Nacional Autónoma de México; MéxicoFil: Esquivel, A.. Universidad Nacional Autónoma de México; Méxic

    A Supernova Remnant Collision with a Stellar Wind

    Get PDF
    Numerical simulations of the interaction between supernova ejecta and a stellar wind are presented. We follow the temporal evolution of the shock fronts that are formed through such an interaction and determine the velocities, temperatures and densities. We model the X-ray emission from the SNR-stellar wind collision region and we compare it with recent results from X-ray observations carried out with the Chandra satellite of the SMC supernova remnant SNR 0057-7226 which could be interacting with the wind of the Wolf-Rayet system HD 5980. The simulations predict the presence of shell-like regions of enhanced X-ray emission which are consistent with the presence of X-ray emitting arcs in the Chandra image. Also the observed X-ray luminosity is comparable to the X-ray luminosities we obtain from the simulations for a supernova with an initial energy in the (1-5)E50 erg range.Comment: 9 files into a tar.gz file (the Latex file of manuscript, 7 jpg figures, 1 style file: aastex.cls). Accepted by ApJ, Vol. 584, 2003 February 1
    corecore