8,144 research outputs found

    ANALYSIS OF THE ELECTRICAL CHARACTERISTICS IN MULTIPHASE FLOW THROUGH THE WIRE-MESH SENSOR

    Get PDF
    Many studies on the characterization of electrical properties of multiphase fluid are found in the literature. One of the main motivations of these efforts has been the development of instrumentation for the measurement of volumetric fraction using electrical sensors. Although one can find a variety of instruments for that purpose, relatively few works in the open literature present studies on the best range of measurement frequency and its effect on permittivity models. An experimental and theoretical study is presented, where the best frequency to measure the volumetric fraction in two and three-phase mixtures is selected. Several permittivity models are applied to measure the volumetric fraction. The fluids used in the experiments were tap water, deionized water, mineral oil, isopropyl alcohol and hexane. Known volumes of fluids were mixed until obtaining a homogeneous mixture. The data were taken by a 1×4 wire-mesh sensor (WMS) immersed in the mixture. The WMS had a gap between planes of 1.4 mm, the wires were 3 mm apart from each other and the diameter of the wires was of 0.2 mm. The experimental system consisted of a generator, an oscilloscope and conditioning circuits (formed by operational amplifiers). A frequency scan was performed between 7000 Hz and 20 MHz for each mixture. A total of 60 logarithmically spaced frequencies were applied

    CP-odd static electromagnetic properties of the W gauge boson and the t quark via the anomalous tbW coupling

    Full text link
    In the framework of the electroweak chiral Lagrangian, the one-loop induced effects of the anomalous tbWtbW coupling, which includes both left- and right-handed complex components, on the static electromagnetic properties of the WW boson and the tt quark are studied. The attention is focused mainly on the CP-violating electromagnetic properties. It is found that the tbWtbW anomalous coupling can induce both CP-violating moments of the WW boson, namely, its electric dipole (μ~W\tilde{\mu}_W) and magnetic quadrupole (Q~W\tilde{Q}_W) moments. As far as the tt quark is concerned, a potentially large electric dipole moment (dt)(d_t) can arise due to the anomalous tbWtbW coupling. The most recent bounds on the left- and right-handed parameters from BB meson physics lead to the following estimates μ~W 10231022\tilde{\mu}_W ~ 10^{-23}-10^{-22} e-cm and Q~W 10381037\tilde{Q}_W~ 10^{-38}-10^{-37} e-cm2^2, which are 7 and 14 orders of magnitude larger than the standard model (SM) predictions, whereas dtd_t may be as large as 102210^{-22} e-cm, which is about 8 orders of magnitude larger than its SM counterpart.Comment: This paper has been merged with hep-ph/0612171 for publication in Physical Review

    Phase behavior of a system of particles with core collapse

    Full text link
    The pressure-temperature phase diagram of a one-component system, with particles interacting through a spherically symmetric pair potential in two dimensions is studied. The interaction consists of a hard core plus an additional repulsion at low energies. It is shown that at zero temperature, instead of the expected isostructural transition due to core collapse occurring when increasing pressure, the system passes through a series of ground states that are not triangular lattices. In particular, and depending on parameters, structures with squares, chains, hexagons and even quasicrystalline ground states are found. At finite temperatures the solid-fluid coexistence line presents a zone with negative slope (which implies melting with decreasing in volume) and the fluid phase has a temperature of maximum density, similar to that in water.Comment: 11 pages, 15 figures included. To appear in PRE. Some figures in low quality format. Better ones available upon request from [email protected]

    Fermion contribution to the static quantities of arbitrarily charged vector bosons

    Full text link
    We present an analysis of the one-loop contribution from left- and right-handed fermions to the static electromagnetic properties of an arbitrarily charged no self-conjugate vector boson VV. Particular emphasis is given to the case of a no self-conjugate neutral boson V0V^0. Regardless the electric charge of the VV boson, a fermionic loop can induce the two CP-even form factors but only one CP-odd. As a result the corresponding electric dipole moment is directly proportional to the magnetic quadrupole moment. The CP-odd form factor might be severely suppressed since it requires the presence of both left- and right-handed fermions. The behavior of the form factors is analyzed for several scenarios of the fermion masses in the context of the decoupling theorem.Comment: 12 pages, 3 figures, submitted to Journal of Physics

    Lattice-Gas Simulations of Minority-Phase Domain Growth in Binary Immiscible and Ternary Amphiphilic Fluid

    Full text link
    We investigate the growth kinetics of binary immiscible fluids and emulsions in two dimensions using a hydrodynamic lattice-gas model. We perform off-critical quenches in the binary fluid case and find that the domain size within the minority phase grows algebraically with time in accordance with theoretical predictions. In the late time regime we find a growth exponent n = 0.45 over a wide range of concentrations, in good agreement with other simluations. In the early time regime we find no universal growth exponent but a strong dependence on the concentration of the minority phase. In the ternary amphiphilic fluid case the kinetics of self assembly of the droplet phase are studied for the first time. At low surfactant concentrations, we find that, after an early algebraic growth, a nucleation regime dominates the late-time kinetics, which is enhanced by an increasing concentration of surfactant. With a further increase in the concentration of surfactant, we see a crossover to logarithmically slow growth, and finally saturation of the oil droplets, which we fit phenomenologically to a stretched exponential function. Finally, the transition between the droplet and the sponge phase is studied.Comment: 22 pages, 13 figures, submitted to PR

    Performance of discrete heat engines and heat pumps in finite time

    Get PDF
    The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.Comment: 45 pages LaTeX, 25 eps figure

    Density Functional for Anisotropic Fluids

    Full text link
    We propose a density functional for anisotropic fluids of hard body particles. It interpolates between the well-established geometrically based Rosenfeld functional for hard spheres and the Onsager functional for elongated rods. We test the new approach by calculating the location of the the nematic-isotropic transition in systems of hard spherocylinders and hard ellipsoids. The results are compared with existing simulation data. Our functional predicts the location of the transition much more accurately than the Onsager functional, and almost as good as the theory by Parsons and Lee. We argue that it might be suited to study inhomogeneous systems.Comment: To appear in J. Physics: Condensed Matte
    corecore