60 research outputs found

    Expression of active human factor IX in mammary tissue and of milk non human transgenic mammals

    Get PDF
    Recombinant Factor IX characterized by a high percentage of active protein can be obtained in the milk of transgenic animals that incorporate chimeric DNA molecules according to the present invention. Transgenic animals of the present invention are produced by introducing into developing embryos DNA that encodes Factor IX, such that the foreign DNA is stably incorporated in the DNA of germ line cells of the mature animal. Particularly efficient expression was accomplished using a chimeric construct comprising a mammary gland specific promoter, Factor IX cDNA that lacked the complete or any portion of the 5\u27-untranslated and 3\u27-untranslated region, which is substituted with a 5\u27- and 3\u27-end of the mouse whey acidic protein gene. In vitro cell cultures of cells explanted from the transgenic mammal of the invention and methods of producing Factor IX from such said culture and methods of treating hemophilia B are also described

    TREATMENT OF HEMOPHILIA WITH HUMAN FACTORIX PRODUCED IN MAMIMARY TISSUE OF TRANSGENIC MAMMALS

    Get PDF
    Recombinant Factor IX characterized by a high percentage of active protein can be obtained in the milk of transgenic animals that incorporate chimeric DNA molecules according to the present invention. Transgenic animals of the present invention are produced by introducing into developing embryos DNA that encodes Factor IX, such that the foreign DNA is stably incorporated in the DNA of germ line cells of the mature animal. Particularly efficient expression was accomplished using a chimeric construct comprising a mammary gland specific promoter, Factor IX cDNA that lacked the complete or any portion of the 5\u27-untranslated and 3\u27-un-translated region, which is substituted with a 5- and 3\u27-end of the mouse whey acidic protein gene. In vitro cell cultures of cells explanted from the transgenic mammal of the invention and methods of producing Factor IX from such said culture and methods of treating hemophilia B are also described

    TRANSGENIC NONHUMAN MAMMALS PRODUCING FIBRINOGEN IN MILKAND METHODS OF PRODUCING FIBRIN

    Get PDF
    A transgenic, non-human mammalian animal is capable of expressing a heterologous gene for human or other recombinant physiologically functional fibrinogen holoprotein or individual subunit chain polypeptides thereofora modified or fusion fibrinogen in mammary glands of the animals and secreting the expressed product into a body fluid. Methodol ogy employing such a mammal yields recombinant physiologically functional fibrinogens, subunit chain polypeptides thereof, and modified or fusion fibrinogens

    EXPRESSION OF HUMAN PROTEIN C IN MAMMARY TISSUE OF TRANSGENIC MAMMALS

    Get PDF
    Recombinant protein C characterized by a high percentage of active protein can be obtained in the milk of transgenic mammals that incorporate DNAs according to the present invention. Transgenic mammals of the present invention are produced by introducing into developing embryos DNA that encodes protein C, such that the DNA is stably incorporated in the DNA of germ line cells of the mature mammals and inherited in normal, mendelian fashion

    TREATMENT OF HEMOPHILIA WITH HUMAN FACTORIX PRODUCED IN MAMIMARY TISSUE OF TRANSGENIC MAMMALS

    Get PDF
    Recombinant Factor IX characterized by a high percentage of active protein can be obtained in the milk of transgenic animals that incorporate chimeric DNA molecules according to the present invention. Transgenic animals of the present invention are produced by introducing into developing embryos DNA that encodes Factor IX, such that the foreign DNA is stably incorporated in the DNA of germ line cells of the mature animal. Particularly efficient expression was accomplished using a chimeric construct comprising a mammary gland specific promoter, Factor IX cDNA that lacked the complete or any portion of the 5\u27-untranslated and 3\u27-un-translated region, which is substituted with a 5- and 3\u27-end of the mouse whey acidic protein gene. In vitro cell cultures of cells explanted from the transgenic mammal of the invention and methods of producing Factor IX from such said culture and methods of treating hemophilia B are also described

    Analysis of the N-glycans of recombinant human Factor IX purified from transgenic pig milk

    Get PDF
    Glycosylation of recombinant proteins is of particular importance because it can play significant roles in the clinical properties of the glycoprotein. In this work, the N-glycan structures of recombinant human Factor IX (tg- FIX) produced in the transgenic pig mammary gland were determined. Themajority of theN-glycans of transgenic pigderived Factor IX (tg-FIX) are complex, bi-antennary with one or two terminal N-acetylneuraminic acid (Neu5Ac) moieties. We also found that the N-glycan structures of tg-FIX produced in the porcine mammary epithelial cells differed with respect to N-glycans from glycoproteins produced in other porcine tissues. tg-FIX contains no detectableNeu5Gc, the sialic acid commonly found in porcine glycoproteins produced in other tissues.Additionally,wewere unable to detect glycans in tg-FIX that have a terminal Galα(1,3)Gal disaccharide sequence, which is strongly antigenic in humans. The N-glycan structures of tg-FIX are also compared to the publishedN-glycan structures of recombinant human glycoproteins produced in other transgenic animal species.While tg-FIX contains only complex structures, antithrombin III (goat), C1 inhibitor (rabbit), and lactoferrin (cow) have both high mannose and complex structures. Collectively, these data represent a beginning point for the future investigation of species-specific and tissue/cell-specific differences in N-glycan structures among animals used for transgenic animal bioreactors

    Analysis of the N-glycans of recombinant human Factor IX purified from transgenic pig milk

    Get PDF
    Glycosylation of recombinant proteins is of particular importance because it can play significant roles in the clinical properties of the glycoprotein. In this work, the N-glycan structures of recombinant human Factor IX (tg- FIX) produced in the transgenic pig mammary gland were determined. Themajority of theN-glycans of transgenic pigderived Factor IX (tg-FIX) are complex, bi-antennary with one or two terminal N-acetylneuraminic acid (Neu5Ac) moieties. We also found that the N-glycan structures of tg-FIX produced in the porcine mammary epithelial cells differed with respect to N-glycans from glycoproteins produced in other porcine tissues. tg-FIX contains no detectableNeu5Gc, the sialic acid commonly found in porcine glycoproteins produced in other tissues.Additionally,wewere unable to detect glycans in tg-FIX that have a terminal Galα(1,3)Gal disaccharide sequence, which is strongly antigenic in humans. The N-glycan structures of tg-FIX are also compared to the publishedN-glycan structures of recombinant human glycoproteins produced in other transgenic animal species.While tg-FIX contains only complex structures, antithrombin III (goat), C1 inhibitor (rabbit), and lactoferrin (cow) have both high mannose and complex structures. Collectively, these data represent a beginning point for the future investigation of species-specific and tissue/cell-specific differences in N-glycan structures among animals used for transgenic animal bioreactors

    Functional factor VIII made with von Willebrand factor at high levels in transgenic milk

    Get PDF
    Background—Current manufacturing methods for recombinant human Factor VIII (rFVIII) within mammalian cell cultures are inefficient which limit the abundance needed for affordable, worldwide treatment of hemophilia A. However, rFVIII has been expressed at very high levels by the transgenic mammary gland of mice, rabbits, sheep and pigs. Unfortunately, it is secreted into milk with low specific activity due in part to the labile, heterodimeric structure that results from furin processing of its B domain. Objectives—To express biologically active rFVIII in the milk of transgenic mice through targeted bioengineering. Methods—Transgenic mice were made with a mammary specific FVIII gene (226/N6) bioengineered for efficient expression and stability containing a B domain with no furin cleavage sites. 226/N6 was expressed with and without von Willebrand Factor (VWF). 226/N6 was evaluated by ELISA, SDS-PAGE, Western blot, and one- and two-stage clotting assays. Hemostatic activity of immunoaffinity enriched 226/N6 was studied in vivo by infusion into hemophilia A knockout mice. Results and conclusions—With or without co-expression of VWF, 226/N6 was secreted into milk as a biologically active single chain molecule that retained high specific activity similar to therapeutic-grade FVIII. 226/N6 had \u3e450-fold higher IU/ml than previously reported in cell culture for rFVIII. 226/N6 exhibited similar binding to plasma-derived VWF as therapeutic-grade rFVIII and intravenous infusion of transgenic 226/N6 corrected the bleeding phenotype of hemophilia A mice. This provides proof-of-principle to study expression of 226/N6 and perhaps other single chain bioengineered rFVIII in the milk of transgenic livestock

    Conformational Changes in an Epitope Localized to the NH2-terminal Region of Protein C

    Get PDF
    Murine monoclonal antibodies, developed following immunization with human protein C, were characterized for their ability tboin d antigen in thpe resence of either CaClz or excess EDTA. Three stablec lones were obtained which produced antiboditehsa t bound to protein C only itnh e presence of EDTA. Allt hree antibodies bound to the light choafi np rotein C on immunoblots and also bound to the homologous proteins factor X and prothrombin in solid-phase radioimmunoassays. One antibody, 7D7B10 was purified and studied further. The binding of 7D7B10 to human protein C was characterized bya KOo f 1.4 nM. In competition studies, it was found that the relative affinityo f the antibody for protein C was 20-40-fold higher than for prothrombin, fragment 1 of prothrombin, or factor X. In contrast, 7D7B10 was unable to bind to factor 1X or bovine protein C. The effect of varying Ca2+ concentration on the interaction of the antibody with protein C was complex. Low concentrations of Ca2+ enhanced the formation of the protein C-antibody complex with half-maximal effect occurring at approximately6 0 PM metal ion. However, higher concentrations of Ca2+ completely inhibited 7D7B10 binding to protein C with a K o .o~f 1.1 mM. Furthermore, millimolar concentrations of Mn2+, Ba2+, or Mg2+ also completely abolished antibody binding to protein C. The location of the epitope was delineatedby immunoblotting and peptide studies andf ound to be present in the NHz-termin1a5l residues of protein C. Although residues corresponding to positions 10-13 of human protein C wernee cessary for maximal binding of the antibody, they were not sufficient. No evidence could be found for involvement of the epitope in metal binding per se. Therefore, the effect of Ca2+ on antibody binding is thought to be due to metal-dependent conformational changes in protein C. It seems likelyth at Ca2+ occupatioonf a high affinity site, shown by others to be located in the epidermal growth factor-like domain, causes a conformational change in the NHz-terminarel gion of protein C which is favorable for antibody interaction, whereas Ca2+ binding to thleo w affinity site($, known to be present in the y-carboxyglutamic acid domain, causes an unfavorable conformational change

    High throughput quantification of N-glycans using one-pot sialic acid modification and matrix assisted laser desorption ionization time of flight mass spectrometry

    Get PDF
    Appropriate glycosylation of recombinant therapeutic glycoproteins has been emphasized in biopharmaceutical industries because the carbohydrate component can affect safety, efficacy, and consistency of the glycoproteins. Reliable quantification methods are essential to ensure consistency of their products with respect to glycosylation, particularly sialylation. Mass spectrometry (MS) has become a popular tool to analyze glycan profiles and structures, showing high resolution and sensitivity with structure identification ability. However, quantification of sialylated glycans using MS is not as reliable because of the different ionization efficiency between neutral and acidic glycans. We report here that amidation in mild acidic conditions can be used to neutralize acidic N-glycans still attached to the protein. The resulting amidated N-glycans can then released from the protein using PNGase F, and labeled with permanent charges on the reducing end to avoid any modification and the formation of metal adducts during MS analysis. The N-glycan modification, digestion, and desalting steps were performed using a single-pot method that can be done in microcentrifuge tubes or 96-well microfilter plates, enabling high throughput glycan analysis. Using this method we were able to perform quantitative MALDI-TOF MS of a recombinant human glycoprotein to determine changes in fucosylation and changes in sialylation that were in very good agreement with a normal phase HPLC oligosaccharide mapping method
    • …
    corecore