455 research outputs found

    Tunable high-energy ion source via oblique laser pulse incidence on a double-layer target

    Full text link
    The laser-driven acceleration of high quality proton beams from a double-layer target, comprised of a high-Z ion layer and a thin disk of hydrogen, is investigated with three-dimensional particle-in-cell simulations in the case of oblique incidence of a laser pulse. It is shown that the proton beam energy reaches its maximum at a certain incidence angle of the laser pulse, where it can be much greater than the energy at normal incidence. The proton beam propagates at some angle with respect to the target surface normal, as determined by the proton energy and the incidence angle

    Radiation Pressure Dominate Regime of Relativistic Ion Acceleration

    Full text link
    The electromagnetic radiation pressure becomes dominant in the interaction of the ultra-intense electromagnetic wave with a solid material, thus the wave energy can be transformed efficiently into the energy of ions representing the material and the high density ultra-short relativistic ion beam is generated. This regime can be seen even with present-day technology, when an exawatt laser will be built. As an application, we suggest the laser-driven heavy ion collider.Comment: 10 pages, 4 figure

    RESEARCH OF POWDER MAGNETIC-SOFT MATERIALS ON THE BASIS OF IRON WITH AN INCREASED COMPLEX OF PHYSICAL AND MECHANICAL PROPERTIES

    Full text link
    The structures and properties of iron powders of the brands ПЖР‑2, ПЖА‑1, ПЖА‑2 have been studied and determined. Experimental work was done to test the modes of the chemical-thermal processing (CHP) process in the vibro-fluidized bed (VFB) at the УТО-В‑120 plant.Исследованы и определены структуры, свойства железных порошков марок ПЖР‑2, ПЖА‑1, ПЖА‑2. Проведены опытные работы по отработке режимов процесса химико-термической обработки (ХТО) в виброкипящем слое (ВКС) на установке УТО-В‑120

    In-Line-Test of Variability and Bit-Error-Rate of HfOx-Based Resistive Memory

    Full text link
    Spatial and temporal variability of HfOx-based resistive random access memory (RRAM) are investigated for manufacturing and product designs. Manufacturing variability is characterized at different levels including lots, wafers, and chips. Bit-error-rate (BER) is proposed as a holistic parameter for the write cycle resistance statistics. Using the electrical in-line-test cycle data, a method is developed to derive BERs as functions of the design margin, to provide guidance for technology evaluation and product design. The proposed BER calculation can also be used in the off-line bench test and build-in-self-test (BIST) for adaptive error correction and for the other types of random access memories.Comment: 4 pages. Memory Workshop (IMW), 2015 IEEE Internationa

    The Pseudomonas aeruginosa accessory genome elements influence virulence towards Caenorhabditis elegans

    Get PDF
    BACKGROUND: Multicellular animals and bacteria frequently engage in predator-prey and host-pathogen interactions, such as the well-studied relationship between Pseudomonas aeruginosa and the nematode Caenorhabditis elegans. This study investigates the genomic and genetic basis of bacterial-driven variability in P. aeruginosa virulence towards C. elegans to provide evolutionary insights into host-pathogen relationships. RESULTS: Natural isolates of P. aeruginosa that exhibit diverse genomes display a broad range of virulence towards C. elegans. Using gene association and genetic analysis, we identify accessory genome elements that correlate with virulence, including both known and novel virulence determinants. Among the novel genes, we find a viral-like mobile element, the teg block, that impairs virulence and whose acquisition is restricted by CRISPR-Cas systems. Further genetic and genomic evidence suggests that spacer-targeted elements preferentially associate with lower virulence while the presence of CRISPR-Cas associates with higher virulence. CONCLUSIONS: Our analysis demonstrates substantial strain variation in P. aeruginosa virulence, mediated by specific accessory genome elements that promote increased or decreased virulence. We exemplify that viral-like accessory genome elements that decrease virulence can be restricted by bacterial CRISPR-Cas immune defense systems, and suggest a positive, albeit indirect, role for host CRISPR-Cas systems in virulence maintenance

    Autoresonance in a Dissipative System

    Full text link
    We study the autoresonant solution of Duffing's equation in the presence of dissipation. This solution is proved to be an attracting set. We evaluate the maximal amplitude of the autoresonant solution and the time of transition from autoresonant growth of the amplitude to the mode of fast oscillations. Analytical results are illustrated by numerical simulations.Comment: 22 pages, 3 figure

    Glutamate-mediated blood-brain barrier opening. implications for neuroprotection and drug delivery

    Get PDF
    The blood-brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood-brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood-brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood-brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood-brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders. SIGNIFICANCE STATEMENT: In this study, we reveal a new mechanism that governs blood-brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders

    Measurement of the Optical Absorption Spectra of Epitaxial Graphene from Terahertz to Visible

    Full text link
    We present experimental results on the optical absorption spectra of epitaxial graphene from the visible to the terahertz (THz) frequency range. In the THz range, the absorption is dominated by intraband processes with a frequency dependence similar to the Drude model. In the near IR range, the absorption is due to interband processes and the measured optical conductivity is close to the theoretical value of e2/4e^{2}/4\hbar. We extract values for the carrier densities, the number of carbon atom layers, and the intraband scattering times from the measurements

    Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications

    Full text link
    Resonant frequencies of the two-dimensional plasma in FETs increase with the reduction of the channel dimensions and can reach the THz range for sub-micron gate lengths. Nonlinear properties of the electron plasma in the transistor channel can be used for the detection and mixing of THz frequencies. At cryogenic temperatures resonant and gate voltage tunable detection related to plasma waves resonances, is observed. At room temperature, when plasma oscillations are overdamped, the FET can operate as an efficient broadband THz detector. We present the main theoretical and experimental results on THz detection by FETs in the context of their possible application for THz imaging.Comment: 22 pages, 12 figures, review pape
    corecore