41 research outputs found

    Diabetes and colorectal cancer risk: A new look at molecular mechanisms and potential role of novel antidiabetic agents

    Get PDF
    Epidemiological data have demonstrated a significant association between the presence of type 2 diabetes mellitus (T2DM) and the development of colorectal cancer (CRC). Chronic hyperglycemia, insulin resistance, oxidative stress, and inflammation, the processes inherent to T2DM, also play active roles in the onset and progression of CRC. Recently, small dense low-density lipoprotein (LDL) particles, a typical characteristic of diabetic dyslipidemia, emerged as another possible underlying link between T2DM and CRC. Growing evidence suggests that antidiabetic medications may have beneficial effects in CRC prevention. According to findings from a limited number of preclinical and clinical studies, glucagon-like peptide-1 receptor agonists (GLP-1RAs) could be a promising strategy in reducing the incidence of CRC in patients with diabetes. However, available findings are inconclusive, and further studies are required. In this review, novel evidence on molecular mechanisms linking T2DM with CRC development, progression, and survival will be discussed. In addition, the potential role of GLP-1RAs therapies in CRC prevention will also be evaluated

    Atherosclerosis development and progression: the role of atherogenic small, dense LDL.

    Get PDF
    Atherosclerosis is responsible for large cardiovascular mortality in many countries globally. It has been shown over the last decades that the reduction of atherosclerotic progression is a critical factor for preventing future cardiovascular events. Low-density lipoproteins (LDL) have been successfully targeted, and their reduction is one of the key preventing measures in patients with atherosclerotic disease. LDL particles are pivotal for the formation and progression of atherosclerotic plaques; yet, they are quite heterogeneous, and smaller, denser LDL species are the most atherogenic. These particles have greater arterial entry and retention, higher susceptibility to oxidation, as well as reduced affinity for the LDL receptor. Increased proportion of small, dense LDL particles is an integral part of the atherogenic lipoprotein phenotype, the most common form of dyslipidemia associated with insulin resistance. Recent data suggest that both genetic and epigenetic factors might induce expression of this specific lipid pattern. In addition, a typical finding of increased small, dense LDL particles was confirmed in different categories of patients with elevated cardiovascular risk. Small, dense LDL is an independent risk factor for cardiovascular diseases, which emphasizes the clinical importance of both the quality and the quantity of LDL. An effective management of atherosclerotic disease should take into account the presence of small, dense LDL in order to prevent cardiovascular complications

    A New Look at Novel Cardiovascular Risk Biomarkers: The Role of Atherogenic Lipoproteins and Innovative Antidiabetic Therapies

    Get PDF
    The presence of residual cardiovascular disease (CVD) risk is a current dilemma in clinical practice; indeed, despite optimal management and treatment, a considerable proportion of patients still undergo major CV events. Novel lipoprotein biomarkers are suggested as possible targets for improving the outcomes of patients at higher risk for CVD, and their impact on major CV events and mortality have previously been investigated. Innovative antidiabetic therapies have recently shown a significant reduction in atherogenic lipoproteins, beyond their effects on glucose parameters; it has also been suggested that such anti-atherogenic effect may represent a valuable mechanistic explanation for the cardiovascular benefit of, at least, some of the novel antidiabetic agents, such as glucagon-like peptide-1 receptor agonists. This emphasizes the need for further research in the field in order to clearly assess the effects of innovative treatments on different novel biomarkers, including atherogenic lipoproteins, such as small dense low-density lipoprotein (LDL), lipoprotein(a) (Lp(a)) and dysfunctional high-density lipoprotein (HDL). The current article discusses the clinical importance of novel lipid biomarkers for better management of patients in order to overcome residual cardiovascular risk

    Electronic Correlations Near a Peierls-CDW Transition

    Full text link
    Results of a phenomenological Monte carlo calculation for a 2D electron-phonon Holstein model near a Peierls-CDW transition are presented. Here the zero Matsubara frequency part of the phonon action is dominant and we approximated it by a phenomenological form that as an Ising-like Peierls-CDW transition. The resulting model is studied on a 32 by 32 lattice. The single particle spectral weight A(k,\omega), the density of states N(\omega), and the real part of the conductivity \sigma_1(\omega) all show evidence of a pseudogap which develops in the low-energy electronic degrees of freedom as the Peierls-CDW transition is approachedComment: 14 pages, 7 figure

    Charge ordering in the spinels AlV2_2O4_4 and LiV2_2O4_4

    Full text link
    We develop a microscopic theory for the charge ordering (CO) transitions in the spinels AlV2_2O4_4 and LiV2_2O4_4 (under pressure). The high degeneracy of CO states is lifted by a coupling to the rhombohedral lattice deformations which favors transition to a CO state with inequivalent V(1) and V(2) sites forming Kagom\'e and trigonal planes respectively. We construct an extended Hubbard type model including a deformation potential which is treated in unrestricted Hartree Fock approximation and describes correctly the observed first-order CO transition. We also discuss the influence of associated orbital order. Furthermore we suggest that due to different band fillings AlV2_2O4_4 should remain metallic while LiV2_2O4_4 under pressure should become a semiconductor when charge disproportionation sets in

    Friedel Oscillations and Charge Density Waves in Chains and Ladders

    Full text link
    The density matrix renormalization group method for ladders works much more efficiently with open boundary conditions. One consequence of these boundary conditions is groundstate charge density oscillations that often appear to be nearly constant in magnitude or to decay only slightly away from the boundaries. We analyse these using bosonization techniques, relating their detailed form to the correlation exponent and distinguishing boundary induced generalized Friedel oscillations from true charge density waves. We also discuss a different approach to extracting the correlation exponent from the finite size spectrum which uses exclusively open boundary conditions and can therefore take advantage of data for much larger system sizes. A general discussion of the Friedel oscillation wave-vectors is given, and a convenient Fourier transform technique is used to determine it. DMRG results are analysed on Hubbard and t-J chains and 2 leg t-J ladders. We present evidence for the existence of a long-ranged charge density wave state in the t-J ladder at a filling of n=0.75 and near J/t \approx 0.25.Comment: Revtex, 15 pages, 15 postscript figure

    Many-body Theory vs Simulations for the pseudogap in the Hubbard model

    Full text link
    The opening of a critical-fluctuation induced pseudogap (or precursor pseudogap) in the one-particle spectral weight of the half-filled two-dimensional Hubbard model is discussed. This pseudogap, appearing in our Monte Carlo simulations, may be obtained from many-body techniques that use Green functions and vertex corrections that are at the same level of approximation. Self-consistent theories of the Eliashberg type (such as the Fluctuation Exchange Approximation) use renormalized Green functions and bare vertices in a context where there is no Migdal theorem. They do not find the pseudogap, in quantitative and qualitative disagreement with simulations, suggesting these methods are inadequate for this problem. Differences between precursor pseudogaps and strong-coupling pseudogaps are also discussed.Comment: Accepted, Phys. Rev. B15 15Mar00. Expanded version of original submission, Latex, 8 pages, epsfig, 5 eps figures (Last one new). Discussion on fluctuation and strong coupling induced pseudogaps expande

    Similarities between the Hubbard and Periodic Anderson Models at Finite Temperatures

    Full text link
    The single band Hubbard and the two band Periodic Anderson Hamiltonians have traditionally been applied to rather different physical problems - the Mott transition and itinerant magnetism, and Kondo singlet formation and scattering off localized magnetic states, respectively. In this paper, we compare the magnetic and charge correlations, and spectral functions, of the two systems. We show quantitatively that they exhibit remarkably similar behavior, including a nearly identical topology of the finite temperature phase diagrams at half-filling. We address potential implications of this for theories of the rare earth ``volume collapse'' transition.Comment: 4 pages (RevTeX) including 4 figures in 7 eps files; as to appear in Phys. Rev. Let

    One particle spectral weight of the three dimensional single band Hubbard model

    Full text link
    Dynamic properties of the three-dimensional single-band Hubbard model are studied using Quantum Monte Carlo combined with the maximum entropy technique. At half-filling, there is a clear gap in the density of states and well-defined quasiparticle peaks at the top (bottom) of the lower (upper) Hubbard band. We find an antiferromagnetically induced weight above the naive Fermi momentum. Upon hole doping, the chemical potential moves to the top of the lower band where a robust peak is observed. Results are compared with spin-density-wave (SDW) mean-field and self consistent Born approximation results, and also with the infinite dimensional Hubbard model, and experimental photoemission (PES) for three dimensional transition-metal oxides.Comment: 11 pages, REVTeX, 16 figures included using psfig.sty. Ref.30 correcte

    A Quantum Monte Carlo algorithm for non-local corrections to the Dynamical Mean-Field Approximation

    Full text link
    We present the algorithmic details of the dynamical cluster approximation (DCA), with a quantum Monte Carlo (QMC) method used to solve the effective cluster problem. The DCA is a fully-causal approach which systematically restores non-local correlations to the dynamical mean field approximation (DMFA) while preserving the lattice symmetries. The DCA becomes exact for an infinite cluster size, while reducing to the DMFA for a cluster size of unity. We present a generalization of the Hirsch-Fye QMC algorithm for the solution of the embedded cluster problem. We use the two-dimensional Hubbard model to illustrate the performance of the DCA technique. At half-filling, we show that the DCA drives the spurious finite-temperature antiferromagnetic transition found in the DMFA slowly towards zero temperature as the cluster size increases, in conformity with the Mermin-Wagner theorem. Moreover, we find that there is a finite temperature metal to insulator transition which persists into the weak-coupling regime. This suggests that the magnetism of the model is Heisenberg like for all non-zero interactions. Away from half-filling, we find that the sign problem that arises in QMC simulations is significantly less severe in the context of DCA. Hence, we were able to obtain good statistics for small clusters. For these clusters, the DCA results show evidence of non-Fermi liquid behavior and superconductivity near half-filling.Comment: 25 pages, 15 figure
    corecore