22 research outputs found

    Physico-Chemical Characteristics of Evaporating Respiratory Fluid Droplets

    Get PDF
    The detailed physico-chemical characteristics of respiratory droplets in ambient air, where they are subject to evaporation, are poorly understood. Changes in the concentration and phase of major components in a droplet—salt (NaCl), protein (mucin) and surfactant (dipalmitoylphosphatidylcholine)—may affect the viability of any pathogens contained within it and thus may affect the efficiency of transmission of infectious disease by droplets and aerosols. The objective of this study is to investigate the effect of relative humidity (RH) on the physico-chemical characteristics of evaporating droplets of model respiratory fluids. We labelled these components in model respiratory fluids and observed evaporating droplets suspended on a superhydrophobic surface using optical and fluorescence microscopy. When exposed to continuously decreasing RH, droplets of different model respiratory fluids assumed different morphologies. Loss of water induced phase separation as well as indication of a decrease in pH. The presence of surfactant inhibited the rapid rehydration of the non-volatile components. An enveloped virus, ϕ6, that has been proposed as a surrogate for influenza virus appeared to be homogeneously distributed throughout the dried droplet. We hypothesize that the increasing acidity and salinity in evaporating respiratory droplets may affect the structure of the virus, although at low enough RH, crystallization of the droplet components may eliminate their harmful effects

    A Letter to Reconsider the Conditions for Testing Decontaminated N95 Respirators for Emergency Reuse to Address Shortage

    Get PDF
    The battle with COVID-19 pandemic has resulted in the shortage of personal protective equipment, particularly, N95 respirators. Healthcare workers who reused N95 respirators may resort to unproven methods of cleaning/sterilization that can severely compromise the respirators’ filtration efficiency. A recently issued guideline will test decontaminated N95 respirators against particles with a median diameter of 0.075 ± 0.020 µm at a flow rate of 85 L min–1. For emergency reuse, these conditions may be too stringent. N95 respirators tested at this flow rate had predicted efficiencies of \u3c 69%, assuming complete degradation of their electrostatic coating. Experimental efficiencies were ~15% lower. For emergency reuse, we recommend to either adjust the flow rate closer to normal breathing, or the size of the test particle should reflect that of virus-laden respiratory aerosols (~\u3e 0.5 µm). By reconsidering the test conditions, a substantial fraction of used/decontaminated respirators can be reused

    Environmentally Persistent Free Radicals: Insights on a New Class of Pollutants

    Get PDF
    © 2018 American Chemical Society. Environmentally persistent free radicals, EPFRs, exist in significant concentration in atmospheric particulate matter (PM). EPFRs are primarily emitted from combustion and thermal processing of organic materials, in which the organic combustion byproducts interact with transition metal-containing particles to form a free radical-particle pollutant. While the existence of persistent free radicals in combustion has been known for over half-a-century, only recently that their presence in environmental matrices and health effects have started significant research, but still in its infancy. Most of the experimental studies conducted to understand the origin and nature of EPFRs have focused primarily on nanoparticles that are supported on a larger micrometer-sized particle that mimics incidental nanoparticles formed during combustion. Less is known on the extent by which EPFRs may form on engineered nanomaterials (ENMs) during combustion or thermal treatment. In this critical and timely review, we summarize important findings on EPFRs and discuss their potential to form on pristine ENMs as a new research direction. ENMs may form EPFRs that may differ in type and concentration compared to nanoparticles that are supported on larger particles. The lack of basic data and fundamental knowledge about the interaction of combustion byproducts with ENMs under high-temperature and oxidative conditions present an unknown environmental and health burden. Studying the extent of ENMs on catalyzing EPFRs is important to address the hazards of atmospheric PM fully from these emerging environmental contaminants

    Dependence on Humidity and Aerosol Composition of the Gas-particle Partitioning of Weakly and Moderately Polar VOCs

    Get PDF
    Volatile organic compounds (VOCs) dominate the class of pollutants that accumulate in the atmosphere and indoors. Assessing the gas-particle partitioning of VOCs is important to determine their fate, transport, and adverse health impacts. This work is a companion to our earlier study on the temperature dependence of VOC partitioning. Here, we report our measurement of the gas-particle partition coefficient (Kp) for weakly polar (trichloroethylene, TCE) and moderately polar (n-butanol, n-BuOH) VOCs under varying relative humidity (RH) levels onto organic and inorganic aerosols. Kp of TCE was four to five orders of magnitude lower than those of n-BuOH. Results suggest preferential sorption of the VOCs onto inorganic aerosol particles than onto organic aerosol particles. Kp values for both TCE and n-BuOH decreased as RH levels increased; the Kp for both VOCs declined sharply at an RH \u3e 35% onto inorganic aerosol particles, whereas the Kp declined slowly onto organic aerosol particles. Partitioning of the VOCs onto organic aerosol particles was less dependent on RH levels while partitioning onto inorganic aerosol particles was important only at low RH levels. At lower RH, partitioning proceeded by adsorbing onto the aerosol particles. In contrast, at higher RH, the extremely low mass fraction of the VOCs, absorbed onto the aerosol particle’s bulk by dissolving into the aqueous phase. For organic aerosol particles, partitioning may be dominated by adsorption at all RH levels. At increasing RH levels, both VOCs partitioning onto in/organic aerosol particles exhibited similar behavior (exponential) consistent to those observed for 1,2-dichlorobenzene, therefore, insensitive to the polarity. However, at a similar RH level, polarity affects the mass fraction of the VOCs that sorbed onto the aerosol particles

    Environmentally Persistent Free Radicals as Sources of POPs

    Get PDF
    Environmentally persistent free radicals (EPFRs) are a new class organic pollutant sharing some of the attributes of persistent organic pollutants (POPs). This opinion/short review aims to describe the properties of EPFRs that merit their recognition as an additional and potentially significant source of POPs. EPFRs are ubiquitous in diverse environments because of multiple factors: (1) organic precursors from anthropogenic, biogenic, and other natural emission sources are abundant; multiple mechanisms in PM and soils form (2) EPFRs; and (3) EPFRs are stable and persist for a long time, thereby, accumulate in the environment and potentially transported long range. The hazards of EPFRs arise from their ability to induce oxidative stress and the formation of hazardous byproducts. EPFRs are ultimately deactivated by reactive processes, yielding molecular recombination byproducts that are structurally similar to those classified as POPs. It is plausible that EPFRs may form POPs in vivo in organisms; therefore, they are potential additional sources of exogenous POPs. Understanding the formation of EPFRs and extensive investigation of the pollutants generated from their recombination will add to the growing body of knowledge on their environmental and health hazards

    Nanoantibiotics: Functions and Properties at the Nanoscale to Combat Antibiotic Resistance

    Get PDF
    One primary mechanism for bacteria developing resistance is frequent exposure to antibiotics. Nanoantibiotics (nAbts) is one of the strategies being explored to counteract the surge of antibiotic resistant bacteria. nAbts are antibiotic molecules encapsulated with engineered nanoparticles (NPs) or artificially synthesized pure antibiotics with a size range of ≤100 nm in at least one dimension. NPs may restore drug efficacy because of their nanoscale functionalities. As carriers and delivery agents, nAbts can reach target sites inside a bacterium by crossing the cell membrane, interfering with cellular components, and damaging metabolic machinery. Nanoscale systems deliver antibiotics at enormous particle number concentrations. The unique size-, shape-, and composition-related properties of nAbts pose multiple simultaneous assaults on bacteria. Resistance of bacteria toward diverse nanoscale conjugates is considerably slower because NPs generate non-biological adverse effects. NPs physically break down bacteria and interfere with critical molecules used in bacterial processes. Genetic mutations from abiotic assault exerted by nAbts are less probable. This paper discusses how to exploit the fundamental physical and chemical properties of NPs to restore the efficacy of conventional antibiotics. We first described the concept of nAbts and explained their importance. We then summarized the critical physicochemical properties of nAbts that can be utilized in manufacturing and designing various nAbts types. nAbts epitomize a potential Trojan horse strategy to circumvent antibiotic resistance mechanisms. The availability of diverse types and multiple targets of nAbts is increasing due to advances in nanotechnology. Studying nanoscale functions and properties may provide an understanding in preventing future outbreaks caused by antibiotic resistance and in developing successful nAbts

    Characterization of Particle Emissions and Fate of Nanomaterials During Incineration

    Get PDF
    As the use of nanotechnology in consumer products continues to grow, it is inevitable that some nanomaterials will end up in the waste stream and will be incinerated. Through laboratory-scale incineration of paper and plastic wastes containing nanomaterials, we assessed their effect on emissions of particulate matter (PM) and the effect of incineration on the nanomaterials themselves. The presence of nanomaterials did not significantly influence the particle number emission factor. The PM size distribution was not affected except at very high mass loadings (10 wt%) of the nanomaterial, in which case the PM shifted toward smaller sizes; such loadings are not expected to be present in many consumer products. Metal oxide nanomaterials reduced emissions of particle-bound polycyclic aromatic hydrocarbons. Most of the nanomaterials that remained in the bottom ash retained their original size and morphology but formed large aggregates. Only small amounts of the nanomaterials (0.023–180 mg g−1 of nanomaterial) partitioned into PM, and the emission factors of nanomaterials from an incinerator equipped with an electrostatic precipitator are expected to be low. However, a sustainable disposal method for nanomaterials in the bottom ash is needed, as a majority of them partitioned into this fraction and may thus end up in landfills upon disposal of the ash

    Aerosol Microdroplets Exhibit a Stable pH Gradient

    Get PDF
    Suspended aqueous aerosol droplets (\u3c50 μm) are microreactors for many important atmospheric reactions. In droplets and other aquatic environments, pH is arguably the key parameter dictating chemical and biological processes. The nature of the droplet air/ water interface has the potential to significantly alter droplet pH relative to bulk water. Historically, it has been challenging to measure the pH of individual droplets because of their inaccessibility to conventional pH probes. In this study, we scanned droplets containing 4-mercaptobenzoic acid–functionalized gold nanoparticle pH nanoprobes by 2D and 3D laser confocal Raman microscopy. Using surface-enhanced Raman scattering, we acquired the pH distribution inside approximately 20-μm-diameter phosphate-buffered aerosol droplets and found that the pH in the core of a droplet is higher than that of bulk solution by up to 3.6 pH units. This finding suggests the accumulation of protons at the air/water interface and is consistent with recent thermodynamic model results. The existence of this pH shift was corroborated by the observation that a catalytic reaction that occurs only under basic conditions (i.e., dimerization of 4-aminothiophenol to produce dimercaptoazobenzene) occurs within the high pH core of a droplet, but not in bulk solution. Our nanoparticle probe enables pH quantification through the cross-section of an aerosol droplet, revealing a spatial gradient that has implications for acid-base–catalyzed atmospheric chemistry

    Influenza Virus Infectivity Is Retained in Aerosols and Droplets Independent of Relative Humidity

    Get PDF
    Pandemic and seasonal influenza viruses can be transmitted through aerosols and droplets, in which viruses must remain stable and infectious across a wide range of environmental conditions. Using humidity-controlled chambers, we studied the impact of relative humidity on the stability of 2009 pandemic influenza A(H1N1) virus in suspended aerosols and stationary droplets. Contrary to the prevailing paradigm that humidity modulates the stability of respiratory viruses in aerosols, we found that viruses supplemented with material from the apical surface of differentiated primary human airway epithelial cells remained equally infectious for 1 hour at all relative humidities tested. This sustained infectivity was observed in both fine aerosols and stationary droplets. Our data suggest, for the first time, that influenza viruses remain highly stable and infectious in aerosols across a wide range of relative humidities. These results have significant implications for understanding the mechanisms of transmission of influenza and its seasonality

    Global Assessment of the Impact of Masking on COVID-19: A Country Level Comparative and Retrospective Analyses Using the Richards Model

    No full text
    Background: Within four months since the first reported case in Wuhan, China, corona virus disease 2019 (COVID-19) spread to more than 200 countries. Since the initially reported cases in each country until mid-August 2020, country-specific interventions on masking were decentralized. Many types of masks are effective under laboratory conditions. But people wear mask inconsistently and imperfectly in the real-world. The extent by which the effectiveness of masking when mandated at a country level for multiple countries/regions reduces severe acute respiratory syndrome 2 (SARS-CoV-2) transmission has not been analyzed. Additionally, the question exists if the type of mask worn, i.e., cloth mask, surgical mask, and bandana, were effective in halting the transmission of SARS-CoV-2. Therefore, using the Richards model, a phenomenological method, we investigated differences in the infection rate (r), turning point (ti), and curve steepness (α) of the COVID-19 outbreak among 177 countries to assess the impact of masking policy and the type of mask in containing the COVID-19.Methods: We used the daily cumulative infection cases from the first reported case until August 19, 2020 for 177 countries/region taken from www.ourworldindata.org , a publicly available COVID-19 data repository. Using data for each country, we derived the r, ti, and α of COVID-19 by fitting them to the Richards model. Data fitting was performed manually in IgorPro software. We evaluated goodness of fit by minimizing the χ2 .Findings: Our analysis revealed that global COVID-19 estimates of α = 0.009 – 4.3 (95% confidence interval (CI95%), 0.005 – 0.680), r = 0.008 – 0.50 (CI95%: 0.0001 – 0.0045), and ti = 0.58 – 315.92 (CI95%: 0.02 – 36.85). The estimated range was within the limit for both countries with and without mask mandates for single and multiple wave cases. Additionally, an early masking mandate did not correlate with a shorter ti.Interpretation: Based on the phenomenological Richards model, this retrospective study’s findings indicate no significant difference in r, ti, and α between countries with and without mask mandate. Therefore, many laboratory and modeling studies on masking did not translate to a measurable difference in the real world for many countries based on our fitting. Effectiveness of masking coupled with other non-pharmaceutical interventions depends on the measures carried out by a specific country/region. This result implies that mask enforcement policy and the type of mask use (e.g., surgical, cloth) could not have significantly reduced SARS-CoV-2 transmission. Therefore, more stringent protection such as N95 combined with other control measures such as enhanced indoor ventilation, a longer social distancing recommendation may be necessary to disrupt SARS-CoV-2 transmission effectively. Therefore, selecting the mask type is critical to effectively disrupt the transmission of SARS-COV-2, which is primarily transmitted via aerosols
    corecore