7 research outputs found

    Genome-Wide Association Study Using Genotyping by Sequencing for Bacterial Leaf Blight Resistance Loci in Local Thai Indica Rice

    Get PDF
    Bacterial leaf blight (BLB) is a devastating disease caused by Xanthomonas oryzae pv. oryzae (Xoo), which poses a significant threat to global rice production. In this study, a genomewide association study (GWAS) was conducted using the genotyping-by-sequencing (GBS) approach to identify candidate single nucleotide polymorphisms (SNPs) associated with BLB resistance genes. The study utilized 200 indica rice accessions inoculated with seven distinct Xoo isolates and filtered highly significant SNPs using a minor allele frequency (MAF) of >5% and a call rate of 75%. Four statistical models were used to explore potential SNPs associated with BLB resistance, resulting in the identification of 32 significant SNPs on chromosomes 1–8 and 12 in the rice genome. Additionally, 179 genes were located within 100 kb of the SNP region, of which 49 were selected as candidate genes based on their known functions in plant defense mechanisms. Several candidate genes were identified, including two genes in the same linkage disequilibrium (LD) decay as the well-known BLB resistance gene (Xa1). These findings represent a valuable resource for conducting further functional studies and developing novel breeding strategies to enhance the crop’s resistance to this disease

    Many paths to one goal: Identifying integrated rice root phenotypes for diverse drought environments

    No full text
    Drought is a major source of yield loss in the production of rice (Oryza sativa L.), and cultivars that maintain yield under drought across environments and drought stress scenarios are urgently needed. Root phenotypes directly affect water interception and uptake, so plants with root systems optimized for water uptake under drought would likely exhibit reduced yield loss. Deeper nodal roots that have a low metabolic cost per length (i.e., cheaper roots) via smaller root diameter and/or more aerenchyma and that transport water efficiently through smaller diameter metaxylem vessels may be beneficial during drought. Subsets of the Rice Diversity Panel 1 and Azucena × IR64 recombinant inbred lines were grown in two greenhouse and two rainout shelter experiments under drought stress to assess their shoot, root anatomical, and root architectural phenotypes. Root traits and root trait plasticity in response to drought varied with genotype and environment. The best-performing groups in the rainout shelter experiments had less plasticity of living tissue area in nodal roots than the worst performing groups. Root traits under drought were partitioned into similar groups or clusters via the partitioning-around-medoids algorithm, and this revealed two favorable integrated root phenotypes common within and across environments. One favorable integrated phenotype exhibited many, deep nodal roots with larger root cross-sectional area and more aerenchyma, while the other favorable phenotype exhibited many, deep nodal roots with small root cross-sectional area and small metaxylem vessels. Deeper roots with high theoretical axial hydraulic conductance combined with reduced root metabolic cost contributed to greater shoot biomass under drought. These results reflect how some root anatomical and architectural phenes work in concert as integrated phenotypes to influence the performance of plant under drought stress. Multiple integrated root phenotypes are therefore recommended to be selected in breeding programs for improving rice yield across diverse environments and drought scenarios
    corecore