8,994 research outputs found
Regularization of fields for self-force problems in curved spacetime: foundations and a time-domain application
We propose an approach for the calculation of self-forces, energy fluxes and
waveforms arising from moving point charges in curved spacetimes. As opposed to
mode-sum schemes that regularize the self-force derived from the singular
retarded field, this approach regularizes the retarded field itself. The
singular part of the retarded field is first analytically identified and
removed, yielding a finite, differentiable remainder from which the self-force
is easily calculated. This regular remainder solves a wave equation which
enjoys the benefit of having a non-singular source. Solving this wave equation
for the remainder completely avoids the calculation of the singular retarded
field along with the attendant difficulties associated with numerically
modeling a delta function source. From this differentiable remainder one may
compute the self-force, the energy flux, and also a waveform which reflects the
effects of the self-force. As a test of principle, we implement this method
using a 4th-order (1+1) code, and calculate the self-force for the simple case
of a scalar charge moving in a circular orbit around a Schwarzschild black
hole. We achieve agreement with frequency-domain results to ~ 0.1% or better.Comment: 15 pages, 12 figures, 1 table. More figures, extended summar
Renormalization Group Flow and Fragmentation in the Self-Gravitating Thermal Gas
The self-gravitating thermal gas (non-relativistic particles of mass m at
temperature T) is exactly equivalent to a field theory with a single scalar
field phi(x) and exponential self-interaction. We build up perturbation theory
around a space dependent stationary point phi_0(r) in a finite size domain
delta \leq r \leq R ,(delta << R), which is relevant for astrophysical applica-
tions (interstellar medium,galaxy distributions).We compute the correlations of
the gravitational potential (phi) and of the density and find that they scale;
the latter scales as 1/r^2. A rich structure emerges in the two-point correl-
tors from the phi fluctuations around phi_0(r). The n-point correlators are
explicitly computed to the one-loop level.The relevant effective coupling turns
out to be lambda=4 pi G m^2 / (T R). The renormalization group equations (RGE)
for the n-point correlator are derived and the RG flow for the effective
coupling lambda(tau) [tau = ln(R/delta), explicitly obtained.A novel dependence
on tau emerges here.lambda(tau) vanishes each time tau approaches discrete
values tau=tau_n = 2 pi n/sqrt7-0, n=0,1,2, ...Such RG infrared stable behavior
[lambda(tau) decreasing with increasing tau] is here connected with low density
self-similar fractal structures fitting one into another.For scales smaller
than the points tau_n, ultraviolet unstable behaviour appears which we connect
to Jeans' unstable behaviour, growing density and fragmentation. Remarkably, we
get a hierarchy of scales and Jeans lengths following the geometric progression
R_n=R_0 e^{2 pi n /sqrt7} = R_0 [10.749087...]^n . A hierarchy of this type is
expected for non-spherical geometries,with a rate different from e^{2 n/sqrt7}.Comment: LaTex, 31 pages, 11 .ps figure
Strings Next To and Inside Black Holes
The string equations of motion and constraints are solved near the horizon
and near the singularity of a Schwarzschild black hole. In a conformal gauge
such that ( = worldsheet time coordinate) corresponds to the
horizon () or to the black hole singularity (), the string
coordinates express in power series in near the horizon and in power
series in around . We compute the string invariant size and
the string energy-momentum tensor. Near the horizon both are finite and
analytic. Near the black hole singularity, the string size, the string energy
and the transverse pressures (in the angular directions) tend to infinity as
. To leading order near , the string behaves as two dimensional
radiation. This two spatial dimensions are describing the sphere in the
Schwarzschild manifold.Comment: RevTex, 19 pages without figure
Cosmological evolution of warm dark matter fluctuations II: Solution from small to large scales and keV sterile neutrinos
We solve the cosmological evolution of warm dark matter (WDM) density
fluctuations with the Volterra integral equations of paper I. In the absence of
neutrinos, the anisotropic stress vanishes and the Volterra equations reduce to
a single integral equation. We solve numerically this equation both for DM
fermions decoupling at equilibrium and DM sterile neutrinos decoupling out of
equilibrium. We give the exact analytic solution for the density fluctuations
and gravitational potential at zero wavenumber. We compute the density contrast
as a function of the scale factor a for a wide range of wavenumbers k. At fixed
a, the density contrast grows with k for k
k_c, (k_c ~ 1.6/Mpc). The density contrast depends on k and a mainly through
the product k a exhibiting a self-similar behavior. Our numerical density
contrast for small k gently approaches our analytic solution for k = 0. For
fixed k < 1/(60 kpc), the density contrast generically grows with a while for k
> 1/(60 kpc) it exhibits oscillations since the RD era which become stronger as
k grows. We compute the transfer function of the density contrast for thermal
fermions and for sterile neutrinos in: a) the Dodelson-Widrow (DW) model and b)
in a model with sterile neutrinos produced by a scalar particle decay. The
transfer function grows with k for small k and then decreases after reaching a
maximum at k = k_c reflecting the time evolution of the density contrast. The
integral kernels in the Volterra equations are nonlocal in time and their
falloff determine the memory of the past evolution since decoupling. This
falloff is faster when DM decouples at equilibrium than when it decouples out
of equilibrium. Although neutrinos and photons can be neglected in the MD era,
they contribute in the MD era through their memory from the RD era.Comment: 27 pages, 6 figures. To appear in Phys Rev
Strings in Cosmological and Black Hole Backgrounds: Ring Solutions
The string equations of motion and constraints are solved for a ring shaped
Ansatz in cosmological and black hole spacetimes. In FRW universes with
arbitrary power behavior [R(X^0) = a\;|X^0|^{\a}\, ], the asymptotic form of
the solution is found for both and and we plot the
numerical solution for all times. Right after the big bang (), the
string energy decreasess as and the string size grows as for . Very
soon [ ] , the ring reaches its oscillatory regime with frequency
equal to the winding and constant size and energy. This picture holds for all
values of \a including string vacua (for which, asymptotically, \a = 1).
In addition, an exact non-oscillatory ring solution is found. For black hole
spacetimes (Schwarzschild, Reissner-Nordstr\oo m and stringy), we solve for
ring strings moving towards the center. Depending on their initial conditions
(essentially the oscillation phase), they are are absorbed or not by
Schwarzschild black holes. The phenomenon of particle transmutation is
explicitly observed (for rings not swallowed by the hole). An effective horizon
is noticed for the rings. Exact and explicit ring solutions inside the
horizon(s) are found. They may be interpreted as strings propagating between
the different universes described by the full black hole manifold.Comment: Paris preprint PAR-LPTHE-93/43. Uses phyzzx. Includes figures. Text
and figures compressed using uufile
Planetoid String Solutions in 3 + 1 Axisymmetric Spacetimes
The string propagation equations in axisymmetric spacetimes are exactly
solved by quadratures for a planetoid Ansatz. This is a straight
non-oscillating string, radially disposed, which rotates uniformly around the
symmetry axis of the spacetime. In Schwarzschild black holes, the string stays
outside the horizon pointing towards the origin. In de Sitter spacetime the
planetoid rotates around its center. We quantize semiclassically these
solutions and analyze the spin/(mass) (Regge) relation for the planetoids,
which turns out to be non-linear.Comment: Latex file, 14 pages, two figures in .ps files available from the
author
- …