8,994 research outputs found

    Regularization of fields for self-force problems in curved spacetime: foundations and a time-domain application

    Full text link
    We propose an approach for the calculation of self-forces, energy fluxes and waveforms arising from moving point charges in curved spacetimes. As opposed to mode-sum schemes that regularize the self-force derived from the singular retarded field, this approach regularizes the retarded field itself. The singular part of the retarded field is first analytically identified and removed, yielding a finite, differentiable remainder from which the self-force is easily calculated. This regular remainder solves a wave equation which enjoys the benefit of having a non-singular source. Solving this wave equation for the remainder completely avoids the calculation of the singular retarded field along with the attendant difficulties associated with numerically modeling a delta function source. From this differentiable remainder one may compute the self-force, the energy flux, and also a waveform which reflects the effects of the self-force. As a test of principle, we implement this method using a 4th-order (1+1) code, and calculate the self-force for the simple case of a scalar charge moving in a circular orbit around a Schwarzschild black hole. We achieve agreement with frequency-domain results to ~ 0.1% or better.Comment: 15 pages, 12 figures, 1 table. More figures, extended summar

    Renormalization Group Flow and Fragmentation in the Self-Gravitating Thermal Gas

    Get PDF
    The self-gravitating thermal gas (non-relativistic particles of mass m at temperature T) is exactly equivalent to a field theory with a single scalar field phi(x) and exponential self-interaction. We build up perturbation theory around a space dependent stationary point phi_0(r) in a finite size domain delta \leq r \leq R ,(delta << R), which is relevant for astrophysical applica- tions (interstellar medium,galaxy distributions).We compute the correlations of the gravitational potential (phi) and of the density and find that they scale; the latter scales as 1/r^2. A rich structure emerges in the two-point correl- tors from the phi fluctuations around phi_0(r). The n-point correlators are explicitly computed to the one-loop level.The relevant effective coupling turns out to be lambda=4 pi G m^2 / (T R). The renormalization group equations (RGE) for the n-point correlator are derived and the RG flow for the effective coupling lambda(tau) [tau = ln(R/delta), explicitly obtained.A novel dependence on tau emerges here.lambda(tau) vanishes each time tau approaches discrete values tau=tau_n = 2 pi n/sqrt7-0, n=0,1,2, ...Such RG infrared stable behavior [lambda(tau) decreasing with increasing tau] is here connected with low density self-similar fractal structures fitting one into another.For scales smaller than the points tau_n, ultraviolet unstable behaviour appears which we connect to Jeans' unstable behaviour, growing density and fragmentation. Remarkably, we get a hierarchy of scales and Jeans lengths following the geometric progression R_n=R_0 e^{2 pi n /sqrt7} = R_0 [10.749087...]^n . A hierarchy of this type is expected for non-spherical geometries,with a rate different from e^{2 n/sqrt7}.Comment: LaTex, 31 pages, 11 .ps figure

    Strings Next To and Inside Black Holes

    Full text link
    The string equations of motion and constraints are solved near the horizon and near the singularity of a Schwarzschild black hole. In a conformal gauge such that τ=0\tau = 0 (τ\tau = worldsheet time coordinate) corresponds to the horizon (r=1r=1) or to the black hole singularity (r=0r=0), the string coordinates express in power series in τ\tau near the horizon and in power series in τ1/5\tau^{1/5} around r=0r=0. We compute the string invariant size and the string energy-momentum tensor. Near the horizon both are finite and analytic. Near the black hole singularity, the string size, the string energy and the transverse pressures (in the angular directions) tend to infinity as r−1r^{-1}. To leading order near r=0r=0, the string behaves as two dimensional radiation. This two spatial dimensions are describing the S2S^2 sphere in the Schwarzschild manifold.Comment: RevTex, 19 pages without figure

    Cosmological evolution of warm dark matter fluctuations II: Solution from small to large scales and keV sterile neutrinos

    Full text link
    We solve the cosmological evolution of warm dark matter (WDM) density fluctuations with the Volterra integral equations of paper I. In the absence of neutrinos, the anisotropic stress vanishes and the Volterra equations reduce to a single integral equation. We solve numerically this equation both for DM fermions decoupling at equilibrium and DM sterile neutrinos decoupling out of equilibrium. We give the exact analytic solution for the density fluctuations and gravitational potential at zero wavenumber. We compute the density contrast as a function of the scale factor a for a wide range of wavenumbers k. At fixed a, the density contrast grows with k for k k_c, (k_c ~ 1.6/Mpc). The density contrast depends on k and a mainly through the product k a exhibiting a self-similar behavior. Our numerical density contrast for small k gently approaches our analytic solution for k = 0. For fixed k < 1/(60 kpc), the density contrast generically grows with a while for k > 1/(60 kpc) it exhibits oscillations since the RD era which become stronger as k grows. We compute the transfer function of the density contrast for thermal fermions and for sterile neutrinos in: a) the Dodelson-Widrow (DW) model and b) in a model with sterile neutrinos produced by a scalar particle decay. The transfer function grows with k for small k and then decreases after reaching a maximum at k = k_c reflecting the time evolution of the density contrast. The integral kernels in the Volterra equations are nonlocal in time and their falloff determine the memory of the past evolution since decoupling. This falloff is faster when DM decouples at equilibrium than when it decouples out of equilibrium. Although neutrinos and photons can be neglected in the MD era, they contribute in the MD era through their memory from the RD era.Comment: 27 pages, 6 figures. To appear in Phys Rev

    Strings in Cosmological and Black Hole Backgrounds: Ring Solutions

    Full text link
    The string equations of motion and constraints are solved for a ring shaped Ansatz in cosmological and black hole spacetimes. In FRW universes with arbitrary power behavior [R(X^0) = a\;|X^0|^{\a}\, ], the asymptotic form of the solution is found for both X0→0X^0 \to 0 and X0→∞X^0 \to \infty and we plot the numerical solution for all times. Right after the big bang (X0=0X^0 = 0), the string energy decreasess as R(X0)−1 R(X^0)^{-1} and the string size grows as R(X0) R(X^0) for 01 0 1 . Very soon [ X0∼1 X^0 \sim 1 ] , the ring reaches its oscillatory regime with frequency equal to the winding and constant size and energy. This picture holds for all values of \a including string vacua (for which, asymptotically, \a = 1). In addition, an exact non-oscillatory ring solution is found. For black hole spacetimes (Schwarzschild, Reissner-Nordstr\oo m and stringy), we solve for ring strings moving towards the center. Depending on their initial conditions (essentially the oscillation phase), they are are absorbed or not by Schwarzschild black holes. The phenomenon of particle transmutation is explicitly observed (for rings not swallowed by the hole). An effective horizon is noticed for the rings. Exact and explicit ring solutions inside the horizon(s) are found. They may be interpreted as strings propagating between the different universes described by the full black hole manifold.Comment: Paris preprint PAR-LPTHE-93/43. Uses phyzzx. Includes figures. Text and figures compressed using uufile

    Planetoid String Solutions in 3 + 1 Axisymmetric Spacetimes

    Get PDF
    The string propagation equations in axisymmetric spacetimes are exactly solved by quadratures for a planetoid Ansatz. This is a straight non-oscillating string, radially disposed, which rotates uniformly around the symmetry axis of the spacetime. In Schwarzschild black holes, the string stays outside the horizon pointing towards the origin. In de Sitter spacetime the planetoid rotates around its center. We quantize semiclassically these solutions and analyze the spin/(mass2^2) (Regge) relation for the planetoids, which turns out to be non-linear.Comment: Latex file, 14 pages, two figures in .ps files available from the author
    • …
    corecore