29 research outputs found

    Malaria rapid diagnostic kits: quality of packaging, design and labelling of boxes and components and readability and accuracy of information inserts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study assessed malaria RDT kits for adequate and correct packaging, design and labelling of boxes and components. Information inserts were studied for readability and accuracy of information.</p> <p>Methods</p> <p>Criteria for packaging, design, labelling and information were compiled from Directive 98/79 of the European Community (EC), relevant World Health Organization (WHO) documents and studies on end-users' performance of RDTs. Typography and readability level (Flesch-Kincaid grade level) were assessed.</p> <p>Results</p> <p>Forty-two RDT kits from 22 manufacturers were assessed, 35 of which had evidence of good manufacturing practice according to available information (<it>i.e</it>. CE-label affixed or inclusion in the WHO list of ISO13485:2003 certified manufacturers). Shortcomings in devices were (i) insufficient place for writing sample identification (n = 40) and (ii) ambiguous labelling of the reading window (n = 6). Buffer vial labels were lacking essential information (n = 24) or were of poor quality (n = 16). Information inserts had elevated readability levels (median Flesch Kincaid grade 8.9, range 7.1 - 12.9) and user-unfriendly typography (median font size 8, range 5 - 10). Inadequacies included (i) no referral to biosafety (n = 18), (ii) critical differences between depicted and real devices (n = 8), (iii) figures with unrealistic colours (n = 4), (iv) incomplete information about RDT line interpretations (n = 31) and no data on test characteristics (n = 8). Other problems included (i) kit names that referred to <it>Plasmodium vivax </it>although targeting a pan-species <it>Plasmodium </it>antigen (n = 4), (ii) not stating the identity of the pan-species antigen (n = 2) and (iii) slight but numerous differences in names displayed on boxes, device packages and information inserts. Three CE labelled RDT kits produced outside the EC had no authorized representative affixed and the shape and relative dimensions of the CE symbol affixed did not comply with the Directive 98/79/EC. Overall, RDTs with evidence of GMP scored better compared to those without but inadequacies were observed in both groups.</p> <p>Conclusion</p> <p>Overall, malaria RDTs showed shortcomings in quality of construction, design and labelling of boxes, device packages, devices and buffers. Information inserts were difficult to read and lacked relevant information.</p

    Effect of stevioside and steviol on the developing broiler embryos

    No full text
    At day 7 of incubation, fertile broiler eggs were injected with different amounts of stevioside and steviol of 0.08, 0.8, or 4 mg stevioside/egg and 0.025, 0.25, or 1.25 mg steviol/egg. At hatch (day 21) and 1 week later, not any influence of the different treatments could be found on embryonic mortality, body weight of the hatchlings, deformations (e.g., bone, beak, and head malformations, abnormal feathering, open vent), or abnormal development of the gonads. No stevioside or steviol could be detected in the blood of the hatchlings. The hatchlings developed normally. It is concluded that prenatal exposure to stevioside and steviol is not toxic for the chicken embryo.status: publishe

    Regulatory capacities of a broiler and layer strain exposed to high CO2 levels during the second half of incubation.

    Full text link
    It has been shown that during embryonic chicken (Gallus gallus) development, the metabolism of broiler embryos differs from that of layers in terms of embryonic growth, pCO2/pO2 blood levels, heat production, and heart rate. Therefore, these strains might adapt differently on extreme environmental factors such as exposure to high CO2. The aim of this study was to compare broiler and layer embryos in their adaptation to 4% CO2 from embryonic days (ED) 12 to 18. Due to hypercapnia, blood pCO2 increased in both strains. Blood bicarbonate concentration was ~10 mmol/L higher in embryos exposed to high CO2 of both strains, while the bicarbonates of broilers had ~5 mmol/L higher values than layer embryos. In addition, the pH increased when embryos of both strains were exposed to CO2. Moreover, under CO2 conditions, the blood potassium concentration increased in both strains significantly, reaching a plateau at ED14. At ED12, the layer strain had a higher increase in CAII protein in red blood cells due to incubation under high CO2 compared to the broiler strain, whereas at ED14, the broiler strain had the highest increase. In conclusion, the most striking observation was the similar mechanism of broiler and layer embryos to cope with high CO2 levels

    The effect of the protein level in a pre-starter diet on the post-hatch performance and activation of ribosomal protein S6 kinase in muscle of neonatal broilers.

    Full text link
    The cytoplasmic serine/threonine ribosomal protein S6 kinase (S6K1) plays a critical role in controlling protein translation. There is evidence that amino acids regulate S6K1 and protein synthesis in avian species, but the effect of dietary protein level on the activation of S6K1 in neonatal chicks is unknown. Therefore, the aim of the present experiment was to investigate the effect of different protein levels, supplied during the first 5 d post-hatch, on body growth, breast muscle development and on the activation of S6K1 and its downstream target, the S6, in neonatal chicks. Chicks were fed a pre-starter diet during the first 5 d post-hatch containing low (19.6 % crude protein (CP); LP), medium (23.1 % CP; MP) or high (26.7 % CP) levels (HP) of protein. Weight gain of chicks fed the HP diet was higher (P < 0.05) compared with those fed the LP diet during day (d)3-d5 and the numerical advantage of this group was maintained from d2 to d7. On d2 and d3, greater levels of S6K1 and S6 phosphorylation and/or activity were observed in chicks receiving the HP diet compared with LP and MP diets, without differences between results of the latter two dietary treatments. In conclusion, the present results suggest that early protein nutrition impacts the development of broiler chicks

    Regulation of growth hormone expression by thyrotropin-releasing hormone through the pituitary-specific transcription factor Pit-1 in chicken pituitary

    No full text
    Pit-1 is a pituitary-specific POU-domain DNA binding factor, which binds to and trans-activates promoters of growth hormone- (GH), prolactin- (PRL) and thyroid stimulating hormone beta- (TSHbeta) encoding genes. Pit-1 has been identified in several mammalian and avian species. Thyrotropin-releasing hormone (TRH) is located in the hypothalamus and it stimulates TSH, GH and PRL release from the pituitary gland. In the present study, we successfully developed a competitive RT-PCR for the detection of Pit-1 expression in the chicken pituitary, that was sensitive enough to detect picogram levels of Pit-1 mRNA. Applying this method, the effect of TRH injections on Pit-1 mRNA expression was determined in the pituitary of chick embryos and growing chicks. In both 18-day-old embryos and 10-day-old male chicks the Pit-1 mRNA expression was significantly increased following TRH injection, thereby indicating that the stimulatory effects of TRH on several pituitary hormones is mediated via its effect on Pit-1 expression. Therefore, a semi-quantitative RT-PCR method was used to detect possible changes in GH levels. TRH affected the GH mRNA levels at both developmental stages. These results, combined with the data on Pit-1 mRNA expression, indicate that Pit-1 has a role in mediating the stimulatory effects of TRH on pituitary hormones like GH.status: publishe

    Effects of capric acid on rumen methanogenesis and biohydrogenation of linoleic and alpha-linolenic acid

    No full text
    Capric acid (00:0), a medium chain fatty acid, was evaluated for its anti-methanogenic activity and its potential to modify the rumen biohydrogenation of linoleic (C18:2n-6) and alpha-linolenic acids (083n-3). A standard dairy concentrate (0.5 g), supplemented with sunflower oil (10 mg) and linseed oil (10 mg) and increasing doses of capric acid (0, 10, 20 and 30 mg), was incubated with mixed rumen contents and buffer (1: 4 v/v) for 24 h. The methane inhibitory effect of capric acid was more pronounced at the highest (30 mg) dose compared to the medium (20 mg) (-85% v. -34%), whereas the lower dose (10 mg) did not reduce rumen methanogenesis. A 23% decrease in total short-chain fatty acid (SCFA) production was observed, accompanied by shifts towards increased butyrate at 20 mg and increased propionate at 30 mg of capric acid (P < 0.001). Capric acid linearly decreased the extent of biohydrogenation of C18:2n-6 and C18:3n-3, by up to 60% and 86%, respectively. This reduction was partially due to a lower extent of lipolysis when capric acid was supplemented. Capric acid at 20 and 30 mg completely inhibited the production of C18:0 (P < 0.001), resulting in an accumulation of biohydrogenation intermediates, mainly 08:1110 + t11 and C18:2t11c15. In contrast to effects on rumen fermentation (methane production and proportions of SCFA), 30 mg of capric acid did not induce major changes in rumen biohydrogenation as compared to the medium (20 mg) dose. This study revealed the dual action of capric acid, being inhibitory to both methane production and biohydrogenation of C18:2n-6 and C18:3n-3

    The chicken pituitary-specific transcription factor Pit-1 is involved in the hypothalamic regulation of pituitary hormones

    No full text
    Pit-1 is a pituitary-specific POU-domain DNA binding factor, which binds to and trans-activates promoters of growth hormone-(GH), prolactin-(PRL) and thyroid stimulating hormone-beta-(TSH beta) encoding genes. Thyrotropin-releasing hormone (TRH) is located in the hypothalamus and stimulates TSH, GH and PRL release from the pituitary gland. In the present study, we successfully used the cell aggregate culture system for chicken pituitary cells to study the effect of TRH administration on the ggPit-1* ( chicken Pit-1), GH and TSH beta mRNA expression in vitro. In pituitary cell aggregates of 11-day-old male broiler chicks the ggPit-1* mRNA expression was significantly increased following TRH administration, indicating that the stimulatory effects of TRH on several pituitary hormones are mediated via its effect on the ggPit-1* gene expression. Therefore, a semi-quantitative RT-PCR method was used to detect possible changes in GH and TSH beta mRNA levels. TRH affected both the GH and TSH beta mRNA levels. The results of this in vitro study reveal that ggPit-1* has a role in mediating the stimulatory effects of TRH on pituitary hormones like GH and TSH beta in the chicken pituitary.status: publishe
    corecore