11 research outputs found

    An in silico approach to study the role of epitope order in the multi-epitope-based peptide (MEBP) vaccine design

    No full text
    Abstract With different countries facing multiple waves, with some SARS-CoV-2 variants more deadly and virulent, the COVID-19 pandemic is becoming more dangerous by the day and the world is facing an even more dreadful extended pandemic with exponential positive cases and increasing death rates. There is an urgent need for more efficient and faster methods of vaccine development against SARS-CoV-2. Compared to experimental protocols, the opportunities to innovate are very high in immunoinformatics/in silico approaches, especially with the recent adoption of structural bioinformatics in peptide vaccine design. In recent times, multi-epitope-based peptide vaccine candidates (MEBPVCs) have shown extraordinarily high humoral and cellular responses to immunization. Most of the publications claim that respective reported MEBPVC(s) assembled using a set of in silico predicted epitopes, to be the computationally validated potent vaccine candidate(s) ready for experimental validation. However, in this article, for a given set of predicted epitopes, it is shown that the published MEBPVC is one among the many possible variants and there is high likelihood of finding more potent MEBPVCs than the published candidates. To test the same, a methodology is developed where novel MEBP variants are derived by changing the epitope order of the published MEBPVC. Further, to overcome the limitations of current qualitative methods of assessment of MEBPVC, to enable quantitative comparison and ranking for the discovery of more potent MEBPVCs, novel predictors, Percent Epitope Accessibility (PEA), Receptor specific MEBP vaccine potency (RMVP), MEBP vaccine potency (MVP) are introduced. The MEBP variants indeed showed varied MVP scores indicating varied immunogenicity. Further, the MEBP variants with IDs, SPVC_446 and SPVC_537, had the highest MVP scores indicating these variants to be more potent MEBPVCs than the published MEBPVC and hence should be preferred candidates for immediate experimental testing and validation. The method enables quicker selection and high throughput experimental validation of vaccine candidates. This study also opens the opportunity to develop new software tools for designing more potent MEBPVCs in less time

    Synthesis and application of luminescent single CdS quantum dot encapsulated silica nanoparticles directed for precision optical bioimaging

    No full text
    Srivani Veeranarayanan, Aby Cheruvathoor Poulose, M Sheikh Mohamed, Yutaka Nagaoka, Seiki Iwai, Yuya Nakagame, Shosaku Kashiwada, Yasuhiko Yoshida, Toru Maekawa, D Sakthi KumarBio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, JapanAbstract: This paper presents the synthesis of aqueous cadmium sulfide (CdS) quantum dots (QDs) and silica-encapsulated CdS QDs by reverse microemulsion method and utilized as targeted bio-optical probes. We report the role of CdS as an efficient cell tag with fluorescence on par with previously documented cadmium telluride and cadmium selenide QDs, which have been considered to impart high levels of toxicity. In this study, the toxicity of bare QDs was efficiently quenched by encapsulating them in a biocompatible coat of silica. The toxicity profile and uptake of bare CdS QDs and silica-coated QDs, along with the CD31-labeled, silica-coated CdS QDs on human umbilical vein endothelial cells and glioma cells, were investigated. The effect of size, along with the time-dependent cellular uptake of the nanomaterials, has also been emphasized. Enhanced, high-specificity imaging toward endothelial cell lines in comparison with glioma cells was achieved with CD31 antibody-conjugated nanoparticles. The silica-coated nanomaterials exhibited excellent biocompatibility and greater photostability inside live cells, in addition to possessing an extended shelf life. In vivo biocompatibility and localization study of silica-coated CdS QDs in medaka fish embryos, following direct nanoparticle exposure for 24 hours, authenticated the nanomaterials' high potential for in vivo imaging, augmented with superior biocompatibility. As expected, CdS QD-treated embryos showed 100% mortality, whereas the silica-coated QD-treated embryos stayed viable and healthy throughout and after the experiments, devoid of any deformities. We provide highly cogent and convincing evidence for such silica-coated QDs as a model nanoparticle in practice, to achieve in vitro and in vivo precision targeted imaging.Keywords: endothelial imaging, CD31, silica nanoparticle, CdS QDs, medaka embryos, biocompatibilit

    Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for targeted cancer therapy

    No full text
    Controlled and targeted drug delivery is an essential criterion in cancer therapy to reduce the side effects caused by non-specific drug release and toxicity. Targeted chemotherapy, sustained drug release and optical imaging have been achieved using a multifunctional nanocarrier constructed from poly (D, l-lactide-co-glycolide) nanoparticles (PLGA NPs), an anticancer drug paclitaxel (PTX), a fluorescent dye Nile red (NR), magnetic fluid (MF) and aptamers (Apt, AS1411, anti-nucleolin aptamer). The magnetic fluid and paclitaxel loaded fluorescently labeled PLGA NPs (MF-PTX-NR-PLGA NPs) were synthesized by a single-emulsion technique/solvent evaporation method using a chemical cross linker bis (sulfosuccinimidyl) suberate (BS3) to enable binding of aptamer on to the surface of the nanoparticles. Targeting aptamers were then introduced to the particles through the reaction with the cross linker to target the nucleolin receptors over expressed on the cancer cell surface. Specific binding and uptake of the aptamer conjugated magnetic fluid loaded fluorescently tagged PLGA NPs (Apt-MF-NR-PLGA NPs) to the target cancer cells induced by aptamers was observed using confocal microscopy. Cytotoxicity assay conducted in two cell lines (L929 and MCF-7) confirmed that targeted MCF-7 cancer cells were killed while control cells were unharmed. In addition, aptamer mediated delivery resulting in enhanced binding and uptake to the target cancer cells exhibited increased therapeutic effect of the drug. Moreover, these aptamer conjugated magnetic polymer vehicles apart from actively transporting drugs into specifically targeted tumor regions can also be used to induce hyperthermia or for facilitating magnetic guiding of particles to the tumor regions.<br/

    PEG Coated Biocompatible Cadmium Chalcogenide Quantum Dots for Targeted Imaging of Cancer Cells

    No full text
    Cancer stands as a leading cause of mortality worldwide and diagnostics of cancer still faces drawbacks. Optical imaging of cancer would allow early diagnosis, evaluation of disease progression and therapy efficiency. To that aim, we have developed highly biocompatible PEG functionalized cadmium chalcogenide based three differently luminescent quantum dots (QDs) (CdS, CdSe and CdTe). Folate targeting scheme was utilized for targeting cancer cell line, MCF-7. We demonstrate the biocompatibility, specificity and efficiency of our nanotool in detection of cancer cells sparing normal cell lines with retained fluorescence of functionalized QDs as parental counterpart. This is the first time report of utilizing three differently fluorescent QDs and we have detailed about the internalization of these materials and time dependent saturation of targeting schemes. We present here the success of utilizing our biocompatible imaging tool for early diagnosis of cancer.<br/
    corecore