16 research outputs found

    USAGE OF INTERACTIVE VIRTUAL REALITY TECHNOLOGY IN PRE-CLINICAL MEDICAL CURRICULUM DELIVERY

    Get PDF
    Teaching pathology in graduate entry medical education is predominantly through didactic lectures. Other innovative forms of imparting pathology education,  such as learning through virtual microscopy, is necessary in the advancing trend of the medical curriculum. With increasing number of disease processes, some medical universities are now using more state-of-the-art technology driven software.  The ultimate goal of the study was to provide options for students and teachers to use virtual microscope learning modules corresponding to key topics in pathology. Through the pathology sessions in years 1 and 2 in the graduate entry medical curriculum, we developed a series of virtual microscopy sessions. A total of nine pre-clinical modules consisting of 224 respondents were done. The students were invited to take part in an evaluation exercise consisting of basic survey questions. The anonymous data were analyzed qualitatively. A significant number of students responded positively for three important themes: (1) the virtual microscope sessions positively influenced more enthusiasm in learning pathology (84%), (2) both VM and a clinicopathological discussion in the form of case study were necessary to achieve those skills (76%), and (3) the VM sessions led to a sense of personal development as a student (71%). An interactive discussion with the students revealed that they were interested and quite enthusiastic to gain knowledge by this module, which depicted the picture, gross & microscopic with some salient text notes, and they felt that this would also be useful for them in tackling the exams, and in future, during their clinical exposure.&nbsp

    The cytotoxcity activity of in vitro isolated and expanded cytotoxic T-lymphocytes and natural killer cells in bladder cancer

    Get PDF
    The expanding roles of the immune system in tumourigenesis have established immunotherapy as a potential mainstream cancer therapeutic modality. Ex vivo expanded and activated cytotoxic T-lymphocytes (CTLs) and natural killer (NK) cells have been found to be efficacious in the treatment of various types of cancers. One of the biggest limitations is the ability to generate and store cytotoxic immune cells in larger numbers without losing its cytotoxicity. Consequently, we evaluated the in vitro cytotoxic activity of freshly cultured and cryopreserved CTLs and NK cells that were expanded in vitro. We also compared the synergistic cytotoxic activity of CTLs and NK cells in combination. The cytotoxic activity was measured in bladder cancer cell lines, EJ28 (invasive) and RT112 (minimally-invasive). All experiments were run in three replicates. The cellular phenotype of the isolated and expanded effector cells was characterised using flow cytometry. MTT assay was performed to assess the dose- and time-dependent cell-mediated cytotoxic activity in the bladder cancer cells. An effector to target ratio of 1:1, 2:1, 5:1, 10:1 and 20:1 was tested after 4 h, 12 h and 24 h incubation. The fresh in vitro expanded effector cells had a high percentage of cell viability and expressed cytotoxic markers CD8+ and CD56+ in the CTL and NK cell cultures, respectively. Although the expansion capacity of the cryopreserved cells was limited, the expression of the functional markers and cytotoxic activity of these effector cells were maintained. All the effector cells exhibited significant cytotoxic activity at the effector to target ratio of 5:1 at 4 hours of co-culture. This was confirmed through the real-time observation of the morphological changes of the cells using an inverted phase contrast and time-lapse confocal microscope. The ex vivo generated CTLs and NK cells appear to retain their functionality, especially in recognizing their allogeneic target and thus, serve as a foundation to build on for future therapeutic applications

    Synthesis, characterisation and biological activities of Ru(III), Mo(V), Cd(II), Zn(II) and Cu(II) complexes containing a novel nitrogen-sulphur macrocyclic Schiff base derived from glyoxal

    Get PDF
    A novel nitrogen-sulphur macrocyclic Schiff base, 4,11,20,27-tetrathioxo-3,12,19,28-tetrathia-5,6,9,10,21,22,25,26-octaazatricyclo[28.2.2.214,17]hexatriaconta 1(33),6,8,14(36),15,17(35),22,24,30(34),31-decaene-2,13,18,29-tetraone (TGSB) derived from terephthaloyl-bis-dithiocarbazate (TDTC) and glyoxal (ethane-1,2-dione) is synthesised via condensation. Metal complexes are formed by reacting the Schiff base with various metal salts such as Ru(III), Mo(V), Cd(II), Zn(II) and Cu(II). The complexes are expected to have a general formula of M2L or M3L with a square planar or square pyramidal geometry. These compounds were characterised by various physico-chemical and spectroscopic techniques. From the data, it is concluded that the azomethine nitrogen atom and the thiolate sulphur atom from the ligand are bonded to the metal ion. In the IR spectra of the complexes, the presence of the C=N band in the region of 1600 cm-1 indicates the successful formation of the Schiff base. The structures of the Schiff base and metal complexes are confirmed via FT-IR, GC-MS and NMR spectroscopic analysis. The magnetic susceptibility measurements, electronic spectral data and molar conductivity analysis support the desired geometry of the complexes. The Schiff base and its metal complexes are evaluated for their biological activities against the invasive human bladder carcinoma cell line (EJ-28) and the minimum-invasive human bladder carcinoma cell line (RT-112). The RuTGSB and CdTGSB complexes showed selective activity against RT-112

    Immunohistochemical expression of NANOG in urothelial carcinoma of the bladder

    Get PDF
    Urothelial carcinoma is a common malignant neoplasm that has a poor prognosis and a high frequency of recurrence and metastasis. Constant disease surveillance with periodic and long term cystoscopy examination is necessary for management of the disease. However, the monitoring and therapy regimen is expensive, incurring a massive burden to patients and the government. Therefore, the development of specific biomarkers for urothelial carcinoma at an early stage and recurrence detection becomes a priority. Homeobox genes are a family of genes that are involved in tumourigenesis. They might be potential prognostic markers for urothelial carcinoma. The study investigated the expression pattern of NANOG which is one of a homeobox gene in different stages and grades of urothelial carcinoma. NANOG expressions were also correlated with patient demographic factors and clinicopathological parameters. The expression of NANOG in 100 formalin-fixed paraffin-embedded urothelial carcinoma tissues was determined by immunohistochemistry. Immunohistochemistry showed positive expression of NANOG in all specimens with detection in the cytoplasm, nuclei and the nuclear membrane of the cancer cells. The immunohistochemical expression of NANOG increased across stages and grades of the tumour. The expression of NANOG was not significantly associated with demographic factors; gender (p = 0.376), race (p = 0.718) and age (p = 0.058) as well as with most of the clinicopathological parameters; pathological stage (p = 0.144), grade (p = 0.625), lymph node involvement (p = 0.174) and distant metastasis (p = 0.228). However, NANOG expression showed significant correlation with tumour invasion (p = 0.019). We concluded that NANOG might be a potential biomarker for early diagnosis of urothelial carcinoma of the bladder

    Overexpression of the JmjC histone demethylase KDM5B in human carcinogenesis: involvement in the proliferation of cancer cells through the E2F/RB pathway.

    Get PDF
    BACKGROUND: Although an increasing number of histone demethylases have been identified and biochemically characterized, their biological functions largely remain uncharacterized, particularly in the context of human diseases such as cancer. We investigated the role of KDM5B, a JmjC histone demethylase, in human carcinogenesis. Quantitative RT-PCR and microarray analyses were used to examine the expression profiles of histone demethylases in clinical tissue samples. We also examined the functional effects of KDM5B on the growth of cancer cell lines treated with small interfering RNAs (siRNAs). Downstream genes and signal cascades induced by KDM5B expression were identified from Affymetrix Gene Chip experiments, and validated by real-time PCR and reporter assays. Cell cycle-dependent characteristics of KDM5B were identified by immunofluorescence and FACS. RESULTS: Quantitative RT-PCR analysis confirmed that expression levels of KDM5B are significantly higher in human bladder cancer tissues than in their corresponding non-neoplastic bladder tissues (P < 0.0001). The expression profile analysis of clinical tissues also revealed up-regulation of KDM5B in various kinds of malignancies. Transfection of KDM5B-specific siRNA into various bladder and lung cancer cell lines significantly suppressed the proliferation of cancer cells and increased the number of cells in sub-G1 phase. Microarray expression analysis indicated that E2F1 and E2F2 are downstream genes in the KDM5B pathway. CONCLUSIONS: Inhibition of KDM5B may affect apoptosis and reduce growth of cancer cells. Further studies will explore the pan-cancer therapeutic potential of KDM5B inhibition.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    miR-137-mediated loss of KDM5B expression leads to suppression of the malignant phenotype of bladder cancer cells

    Get PDF
    The oncogenic role of KDM5B is implicated in the pathogenesis of many cancers including bladder cancer (BC). KDM5B is a histone demethylase enzyme that modifies the chromatin structure to specify cellular transcriptional states. Overexpression of KDM5B in cancer cells is correlated with an increased proliferative capacity. Intriguingly, KDM5B is a cancer/testis antigen; while its expression in tumours is ectopically amplified, KDM5B expression in normal conditions is limited to embryonic stem cells (ESCs) and the testis in adults. These unique characteristics make KDM5B a potential pan-cancer therapeutic target. Thus, this study was aimed at identifying potential regulators of KDM5B. Since KDM5B expression in ESCs is orchestrated by microRNAs (miRNAs) and the expression of many miRNAs are altered in BC, we hypothesized that miRNAs may be the switch that can abate KDM5B expression to mitigate the BC malignant phenotype. Based on IHC- and RT-QPCR analysis, we found that KDM5B protein and transcript levels were differentially expressed in cancer tissues and cell lines, respectively. Amongst several in silico-predicted putative KDM5B-targeting miRNAs, the in vitro basal expression of miR-137 was inversely correlated with KDM5B expression. We demonstrated that the overexpression of miR-137 significantly attenuated KDM5B expression, induced G1 cell-cycle arrest, suppressed cell growth and blocked invasion and migration of BC cells. In contrast, downregulation of miR-137 expression led to the reverse effect. By integrating in silico screens of miR-137 putative target genes and microarray data using the Ingenuity Pathway Analysis (IPA), we revealed that miR-137 possibly exerts control over the cell-cycle through Rb and adenylyl cyclic signalling pathways by targeting key regulators of cyclin A. We also showed that miR-137 gain-of-function increased the expression of tumor suppressor, JDP2. While our results suggest that miR-137 can mitigate the KDM5B-associated BC phenotype, further studies on understanding the effect on aberrant histone methylation patterns are warranted

    Oncolytic effects of the recombinant newcastle disease virus, rAF-IL12, against colon cancer cells in vitro and in tumor-challenged NCr-foxn1nu nude mice

    Get PDF
    Colon cancer remains one of the main cancers causing death in men and women worldwide as certain colon cancer subtypes are resistant to conventional treatments and the development of new cancer therapies remains elusive. Alternative modalities such as the use of viral-based therapeutic cancer vaccine is still limited, with only the herpes simplex virus (HSV) expressing granulocyte-macrophage colony- stimulating factor (GM-CSF) or talimogene laherparepvec (T-Vec) being approved in the USA and Europe so far. Therefore, it is imperative to continue the search for a new treatment modality. This current study evaluates a combinatorial therapy between the oncolytic Newcastle disease virus (NDV) and interleukin-12 (IL-12) cytokine as a potential therapeutic vaccine to the current anti-cancer drugs. Several in vitro analyses such as MTT assay, Annexin V/FITC flow cytometry, and cell cycle assay were performed to evaluate the cytotoxicity effect of recombinant NDV, rAF-IL12. Meanwhile, serum cytokine, serum biochemical, histopathology of organs and TUNEL assay were carried out to assess the anti-tumoral effects of rAF-IL12 in HT29 tumor-challenged nude mice. The apoptosis mechanism underlying the effect of rAF-IL12 treatment was also investigated using NanoString Gene expression analysis. The recombinant NDV, rAF-IL12 replicated in HT29 colon cancer cells as did its parental virus, AF2240-i. The rAF-IL12 treatment had slightly better cytotoxicity effects towards HT29 cancer cells when compared to the AF2240-i as revealed by the MTT, Annexin V FITC and cell cycle assay. Meanwhile, the 28-day treatment with rAF-IL12 had significantly (p < 0.05) perturbed the growth and progression of HT29 tumor in NCr-Foxn1nu nude mice when compared to the untreated and parental wild-type NDV strain AF2240-i. The rAF-IL12 also modulated the immune system in nude mice by significantly (p < 0.05) increased the level of IL-2, IL-12, and IFN-γ cytokines. Treatment with rAF-IL12 had also significantly (p < 0.05) increased the expression level of apoptosis-related genes such as Fas, caspase-8, BID, BAX, Smad3 and granzyme B in vitro and in vivo. Besides, rAF-IL12 intra-tumoral delivery was considered safe and was not hazardous to the host as evidenced in pathophysiology of the normal tissues and organs of the mice as well as from the serum biochemistry profile of liver and kidney. Therefore, this study proves that rAF-IL12 had better cytotoxicity effects than its parental AF2240-i and could potentially be an ideal treatment for colon cancer in the near future

    Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands

    Get PDF
    Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC) with 2-methoxybenzaldehyde (2MB) and 3-methoxybenzaldehyde (3MB). The ligands were reacted separately with acetates of Cu(II), Ni(II) and Zn(II) yielding 1:2 (metal:ligand) complexes. The metal complexes formed were expected to have a general formula of [M(NS)2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1) and S2M3MBH (2) were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cell lines. Only the Cu(II) complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II) complexes have a strong DNA binding affinity
    corecore