46 research outputs found
Spin-Orbital Entanglement and the Breakdown of Singlets and Triplets in Sr2RuO4 Revealed by Spin- and Angle-Resolved Photoemission Spectroscopy
Spin-orbit coupling has been conjectured to play a key role in the low-energy electronic structure of Sr2RuO4. By using circularly polarized light combined with spin-and angle-resolved photoemission spectroscopy, we directly measure the value of the effective spin-orbit coupling to be 130 +/- 30 meV. This is even larger than theoretically predicted and comparable to the energy splitting of the d(xy) and d(xz,yz) orbitals around the Fermi surface, resulting in a strongly momentum-dependent entanglement of spin and orbital character in the electronic wavefunction. As demonstrated by the spin expectation value calculated for a pair of electrons with zero total momentum, the classification of the Cooper pairs in terms of pure singlets or triplets fundamentally breaks down, necessitating a description of the unconventional superconducting state of Sr2RuO4 in terms of these newly found spin-orbital entangled eigenstates
Broken time-reversal symmetry probed by muon spin relaxation in the caged type superconductor Lu5Rh6Sn18
The superconducting state of the caged type compound Lu5Rh6Sn18 has been investigated by using magnetization, heat capacity, and muon spin relaxation or rotation (?SR) measurements, and the results interpreted on the basis of the group theoretical classifications of the possible pairing symmetries and a simple model of the resulting quasiparticle spectra. Our zero-field ?SR measurements clearly reveal the spontaneous appearance of an internal magnetic field below the transition temperature, which indicates that the superconducting state in this material is characterized by broken time-reversal symmetry. Further, the analysis of the temperature dependence of the magnetic penetration depth measured using the transverse-field ?SR measurements suggests an isotropic s?wave character for the superconducting gap. This is in agreement with the heat capacity behavior, and we show that it can be interpreted in terms of a nonunitary triplet state with point nodes and an open Fermi surface
Important Roles of Te 5p and Ir 5d Spin-orbit Interactions on the Multi-band Electronic Structure of Triangular Lattice Superconductor Ir1-xPtxTe2
We report an angle-resolved photoemission spectroscopy (ARPES) study on a
triangular lattice superconductor IrPtTe in which the Ir-Ir
or Te-Te bond formation, the band Jahn-Teller effect, and the spin-orbit
interaction are cooperating and competing with one another. The Fermi surfaces
of the substituted system are qualitatively similar to the band structure
calculations for the undistorted IrTe with an upward chemical potential
shift due to electron doping. A combination of the ARPES and the band structure
calculations indicates that the Te spin-orbit interaction removes the
orbital degeneracy and induces type spin-orbit
coupling near the A point. The inner and outer Fermi surfaces are entangled by
the Te and Ir spin-orbit interactions which may provide exotic
superconductivity with singlet-triplet mixing.Comment: 10 pages, 4 figure
Spin polarization in photoemission from the cuprate superconductor Bi2Sr2CaCu2O8+delta
Photoelectrons produced from the excitation of spin-degenerate states in solids can have a sizable spin polarization, which is related to the phase of interfering channels in the photoemission matrix elements. Such spin polarization can be measured by spin-resolved photoemission spectroscopy to gain information about the transitions and the Wigner time delay of the process. Incorporating strongly correlated electron systems into this paradigm could yield a novel means of extracting phase information crucial to understanding the mechanism of their emergent behavior. In this work, we present, as a case study, experimental measurements of the cuprate superconductor Bi2Sr2CaCu2O8+delta by spin-resolved photoemission while maintaining full angular and energy resolution. A spin polarization of at least 10% is observed, which is related to the phase of the photoelectron wave function
Unconventional superconductivity in the cage type compound ScRhSn
We have examined the superconducting ground state properties of the caged
type compound ScRhSn using magnetization, heat capacity, and
muon-spin relaxation or rotation (SR) measurements. Magnetization
measurements indicate type-II superconductivity with an upper critical field
= 7.24 T. The zero-field cooled and field cooled
susceptibility measurements unveil an onset of diamagnetic signal below = 4.4 K. The interpretation of the heat capacity results below
using the BCS model unveils the value of = 2.65, which gives
the dimensionless ratio 2 = 5.3, intimating that
ScRhSn is a strong-coupling BCS superconductor. The zero-field
SR measurements in the longitudinal geometry exhibit a signature of a
spontaneous appearance of the internal magnetic field below the superconducting
transition temperature, indicating that the superconducting state is
characterized by the broken time-reversal symmetry (TRS). We have compared the
results of broken TRS in ScRhSn with that observed in
RRhSn (R = Lu and Y).Comment: 6 pages, 4 figures. arXiv admin note: text overlap with
arXiv:1411.687
Stabilizing Even-Parity Chiral Superconductivity in SrRuO
Strontium ruthenate (SrRuO) has long been thought to host a
spin-triplet chiral -wave superconducting state. However, the singletlike
response observed in recent spin-susceptibility measurements casts serious
doubts on this pairing state. Together with the evidence for broken
time-reversal symmetry and a jump in the shear modulus at the
superconducting transition temperature, the available experiments point towards
an even-parity chiral superconductor with -like
symmetry, which has consistently been dismissed based on the
quasi-two-dimensional electronic structure of SrRuO. Here, we show how
the orbital degree of freedom can encode the two-component nature of the
order parameter, allowing for a local orbital-antisymmetric spin-triplet state
that can be stabilized by on-site Hund's coupling. We find that this exotic
state can be energetically stable once a complete, realistic
three-dimensional model is considered, within which momentum-dependent
spin-orbit coupling terms are key. This state naturally gives rise to
Bogoliubov Fermi surfaces.Comment: 6+10 pages, 5 figure