17 research outputs found
In search of multipolar order on the Penrose tiling
Based on Monte Carlo calculations, multipolar ordering on the Penrose tiling,
relevant for two-dimensional molecular adsorbates on quasicrystalline surfaces
and for nanomagnetic arrays, has been analyzed. These initial investigations
are restricted to multipolar rotors of rank one through four - described by
spherical harmonics Ylm with l=1...4 and restricted to m=0 - positioned on the
vertices of the rhombic Penrose tiling. At first sight, the ground states of
odd-parity multipoles seem to exhibit long-range multipolar order, indicated by
the appearance of a superstructure in the form of the decagonal
Hexagon-Boat-Star tiling, in agreement with previous investigations of dipolar
systems. Yet careful analysis establishes that long-range multipolar order is
absent in all cases investigated here, and only short-range order exists. This
result should be taken as a warning for any future analysis of order in either
real or simulated arrangements of multipoles on quasiperiodic templates
Emergent dynamic chirality in a thermally driven artificial spin ratchet
Modern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice1, 2 can lead to specific collective behaviour3, including emergent magnetic monopoles4, 5, charge screening6, 7 and transport8, 9, as well as magnonic response10, 11, 12. Here, we demonstrate a spin-ice-based active material in which energy is converted into unidirectional dynamics. Using X-ray photoemission electron microscopy we show that the collective rotation of the average magnetization proceeds in a unique sense during thermal relaxation. Our simulations demonstrate that this emergent chiral behaviour is driven by the topology of the magnetostatic field at the edges of the nanomagnet array, resulting in an asymmetric energy landscape. In addition, a bias field can be used to modify the sense of rotation of the average magnetization. This opens the possibility of implementing a magnetic Brownian ratchet13, 14, which may find applications in novel nanoscale devices, such as magnetic nanomotors, actuators, sensors or memory cells
Geometric frustration in compositionally modulated ferroelectrics
Geometric frustration is a broad phenomenon that results from an intrinsic
incompatibility between some fundamental interactions and the underlying
lattice geometry1-7. Geometric frustration gives rise to new fundamental
phenomena and is known to yield intriguing effects, such as the formation of
exotic states like spin ice, spin liquids and spin glasses1-7. It has also led
to interesting findings of fractional charge quantization and magnetic
monopoles5,6. Geometric frustration related mechanisms have been proposed to
understand the origins of relaxor behavior in some multiferroics, colossal
magnetocapacitive coupling and unusual and novel mechanisms of high Tc
superconductivity1-5. Although geometric frustration has been particularly well
studied in magnetic systems in the last 20 years or so, its manifestation in
the important class formed by ferroelectric materials (that are compounds
exhibiting electric rather than magnetic dipoles) is basically unknown. Here,
we show, via the use of a first-principles-based technique, that
compositionally graded ferroelectrics possess the characteristic "fingerprints"
associated with geometric frustration. These systems have a highly degenerate
energy surface and exhibit original critical phenomena. They further reveal
exotic orderings with novel stripe phases involving complex spatial
organization. These stripes display spiral states, topological defects and
curvature. Compositionally graded ferroelectrics can thus be considered as the
"missing" link that brings ferroelectrics into the broad category of materials
able to exhibit geometric frustration. Our ab-initio calculations allow a deep
microscopic insight into this novel geometrically frustrated system.Comment: 14 pages, 5 Figures;
http://www.nature.com/nature/journal/v470/n7335/full/nature09752.htm
Unlocking Bloch-type chirality in ultrathin magnets through uniaxial strain
Chiral magnetic domain walls are of great interest because lifting the energetic degeneracy of left- and right-handed spin textures in magnetic domain walls enables fast current-driven domain wall propagation. Although two types of magnetic domain walls are known to exist in magnetic thin films, Bloch- and NĂ©el-walls, up to now the stabilization of homochirality was restricted to NĂ©el-type domain walls. Since the driving mechanism of thin-film magnetic chirality, the interfacial Dzyaloshinskii-Moriya interaction, is thought to vanish in Bloch-type walls, homochiral Bloch walls have remained elusive. Here we use real-space imaging of the spin texture in iron/nickel bilayers on tungsten to show that chiral domain walls of mixed Bloch-type and NĂ©el-type can indeed be stabilized by adding uniaxial strain in the presence of interfacial Dzyaloshinskii-Moriya interaction. Our findings introduce Bloch-type chirality as a new spin texture, which may open up new opportunities to design spin-orbitronics devices