51 research outputs found

    Computational Deorphaning of <em>Mycobacterium tuberculosis</em> Targets

    Get PDF
    Tuberculosis (TB) continues to be a major health hazard worldwide due to the resurgence of drug discovery strains of Mycobacterium tuberculosis (Mtb) and co-infection. For decades drug discovery has concentrated on identifying ligands for ~10 Mtb targets, hence most of the identified essential proteins are not utilised in TB chemotherapy. Here computational techniques were used to identify ligands for the orphan Mtb proteins. These range from ligand-based and structure-based virtual screening modelling the proteome of the bacterium. Identification of ligands for most of the Mtb proteins will provide novel TB drugs and targets and hence address drug resistance, toxicity and the duration of TB treatment

    Decoding the similarities and differences among mycobacterial species

    Get PDF
    Mycobacteriaceae comprises pathogenic species such as Mycobacterium tuberculosis, M. leprae and M. abscessus, as well as non-pathogenic species, for example, M. smegmatis and M. thermoresistibile. Genome comparison and annotation studies provide insights into genome evolutionary relatedness, identify unique and pathogenicity-related genes in each species, and explore new targets that could be used for developing new diagnostics and therapeutics. Here, we present a comparative analysis of ten-mycobacterial genomes with the objective of identifying similarities and differences between pathogenic and non-pathogenic species. We identified 1080 core orthologous clusters that were enriched in proteins involved in amino acid and purine/pyrimidine biosynthetic pathways, DNA-related processes (replication, transcription, recombination and repair), RNA-methylation and modification, and cell- wall polysaccharide biosynthetic pathways. For their pathogenicity and survival in the host cell, pathogenic species have gained specific sets of genes involved in repair and protection of their genomic DNA. M. leprae is of special interest owing to its having the smallest genome (1600 genes and ~1300 psuedogenes), yet poor genome annotation. More than 75% of the pseudogenes were found to have a functional ortholog in the other mycobacterial genomes and belong to protein families such as transferases, oxidoreductases and hydrolases.This work was supported by MRC Newton Award (RG78439: SM, TLB), Programme Grant (093167/Z/10/Z: TLB), Cystic Fibrosis Trust Grant (RG70975) and Wellcome Trust Investigator Award (200814/Z/16/Z: TLB), American Leprosy Mission (RG88726: SCV). Funding for open access charge: [MRC Newton Award/ RG78439]

    COSMIC Cancer Gene Census 3D database: understanding the impacts of mutations on cancer targets

    Get PDF
    Mutations in hallmark genes are believed to be the main drivers of cancer progression. These mutations are reported in the Catalogue of Somatic Mutations in Cancer (COSMIC). Structural appreciation of where these mutations appear, in protein-protein interfaces, active sites or deoxyribonucleic acid (DNA) interfaces, and predicting the impacts of these mutations using a variety of computational tools are crucial for successful drug discovery and development. Currently, there are 723 genes presented in the COSMIC Cancer Gene Census. Due to the complexity of the gene products, structures of only 87 genes have been solved experimentally with structural coverage between 90% and 100%. Here, we present a comprehensive, user-friendly, web interface (https://cancer-3d.com/) of 714 modelled cancer-related genes, including homo-oligomers, hetero-oligomers, transmembrane proteins and complexes with DNA, ribonucleic acid, ligands and co-factors. Using SDM and mCSM software, we have predicted the impacts of reported mutations on protein stability, protein-protein interfaces affinity and protein-nucleic acid complexes affinity. Furthermore, we also predicted intrinsically disordered regions using DISOPRED3

    SARS-CoV-2 3D database: Understanding the Coronavirus Proteome and Evaluating Possible Drug Targets.

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a rapidly growing infectious disease, widely spread with high mortality rates. Since the release of the SARS-CoV-2 genome sequence in March 2020, there has been an international focus on developing target-based drug discovery, which also requires knowledge of the 3D structure of the proteome. Where there are no experimentally solved structures, our group has created 3D models with coverage of 97.5% and characterised them using state-of-the-art computational approaches. Models of protomers and oligomers, together with predictions of substrate and allosteric binding sites, protein- ligand docking, SARS-CoV-2 protein interactions with human proteins, impacts of mutations, and mapped solved experimental structures are freely available for download. These are imple- mented in SARS CoV-2 3D, a comprehensive and user-friendly database, available at https://sars3d.com/. This provides essential information for drug discovery, both to evaluate targets and design new potential therapeutics.This work is supported and funded by King Abdullah scholarship (Saudi Arabia research coun- cil), and American Leprosy Missions grants (G88726), SET is funded by the Cystic Fibrosis Trust (RG 70975) and Fondation Botnar (RG91317). A.R.J is funded by the Biotechnology and Biological Sciences Research Council (BBSRC) DTP studentship (BB/M011194/1). B.B. is funded by the Cystic Fibrosis Trust and L.C. on a studentship from Ipsen. T.L.B. is funded by a the Wellcome Trust Investigator Award, PHZJ/489 RG83114 (2016-2021

    Prediction of rifampicin resistance beyond the RRDR using structure-based machine learning approaches

    Get PDF
    Funder: Medical Research Council; doi: http://dx.doi.org/10.13039/501100000265Funder: National Health and Medical Research Council; doi: http://dx.doi.org/10.13039/501100000925Abstract: Rifampicin resistance is a major therapeutic challenge, particularly in tuberculosis, leprosy, P. aeruginosa and S. aureus infections, where it develops via missense mutations in gene rpoB. Previously we have highlighted that these mutations reduce protein affinities within the RNA polymerase complex, subsequently reducing nucleic acid affinity. Here, we have used these insights to develop a computational rifampicin resistance predictor capable of identifying resistant mutations even outside the well-defined rifampicin resistance determining region (RRDR), using clinical M. tuberculosis sequencing information. Our tool successfully identified up to 90.9% of M. tuberculosis rpoB variants correctly, with sensitivity of 92.2%, specificity of 83.6% and MCC of 0.69, outperforming the current gold-standard GeneXpert-MTB/RIF. We show our model can be translated to other clinically relevant organisms: M. leprae, P. aeruginosa and S. aureus, despite weak sequence identity. Our method was implemented as an interactive tool, SUSPECT-RIF (StrUctural Susceptibility PrEdiCTion for RIFampicin), freely available at https://biosig.unimelb.edu.au/suspect_rif/
    • …
    corecore