49 research outputs found
Feasibility of a Small, Rapid Optical-to-IR Response, Next Generation Gamma Ray Burst Mission
We present motivations for and study feasibility of a small, rapid optical to
IR response gamma ray burst (GRB) space observatory. By analyzing existing GRB
data, we give realistic detection rates for X-ray and optical/IR instruments of
modest size under actual flight conditions. Given new capabilities of fast
optical/IR response (about 1 s to target) and simultaneous multi-band imaging,
such an observatory can have a reasonable event rate, likely leading to new
science. Requiring a Swift-like orbit, duty cycle, and observing constraints, a
Swift-BAT scaled down to 190 square cm of detector area would still detect and
locate about 27 GRB per yr. for a trigger threshold of 6.5 sigma. About 23
percent of X-ray located GRB would be detected optically for a 10 cm diameter
instrument (about 6 per yr. for the 6.5 sigma X-ray trigger).Comment: Elaborated text version of a poster presented at 2012 Malaga/Marbella
symposiu
Slewing Mirror Telescope optics for the early observation of UV/optical photons from Gamma-Ray Bursts
We report on design, manufacture, and testing of a Slewing Mirror Telescope (SMT), the first of its kind and a part of Ultra-Fast Flash Observatory-pathfinder (UFFO-p) for space-based prompt measurement of early UV/optical light curves from Gamma-Ray Bursts (GRBs). Using a fast slewing mirror of 150 mm diameter mounted on a 2 axis gimbal stage, SMT can deliver the images of GRB optical counterparts to the intensified CCD detector within 1.5∼1.8 s over ± 35 degrees in the slewing field of view. Its Ritchey-Chrétien telescope of 100 mm diameter provides a 17 × 17 arcmin2 instantaneous field of view. Technical details of design, construction, the laboratory performance tests in space environments for this unique SMT are described in conjunction with the plan for in-orbit operation onboard the Lomonosov satellite in 2013. © 2013 Optical Society of America.This research was supported by the Korean Creative Research Initiatives (RCMST) of MEST/NRF, the Basic Science Research program of MEST/NRF (2010-0025056), the World Class University program of MEST/NRF (R32-2009-000-10130-0), the Spanish MINECO project AYA-2009-14027-C05-01, AYA-2011-29936-C05-01, AYA-2012-39727-C03-01, and AYA 2009-14000-C03-01/ESP, Taiwan's National Science Council Vanguard Program (100-2119-M-002-025) LeCosPA of National Taiwan University, Program of development of Lomonosov Moscow State University and Korean programs NRF 2012-0006632, 20100029390 and Yonsei-KASI joint research for the Frontiers of Astronomy and Space Science Program 2012Peer Reviewe