29 research outputs found

    Gait and balance in cervical dystonia and dystonic head tremor

    Get PDF
    Background: Previous studies have found gait and balance abnormalities in patients with cervical dystonia. However, the characteristics of gait and balance in cervical dystonia with head tremors have not been ascertained. A midline constant head tremor when walking would likely render gait and balance more difficult. The pathophysiology of dystonia has also been increasingly linked with cerebellar function abnormality, commonly implicated in gait and balance disorders.Methods: We examined the gait and balance characteristics of cervical dystonia presenting with head tremors. We used the timed up-and-go (TUG) walk test, 10 m walk test, Berg Balance Scale (BBS), and Gait and Freezing questionnaire. We then assessed the gait on an instrumented walkway system to capture spatiotemporal measures such as speed, cadence, step time, step length, stride width, swing%, stance%, single support%, double support%, and gait variability index (GVI). We also assessed whether the gait in dystonic tremor (DT) differed from essential tremor (ET) and orthostatic tremor (OT), as these tremor disorders share the cerebello-thalamo-cortical pathway as the common pathological pathway.Results: 50 participants comprising DT (20 patients), ET (15 patients), and OT (15 patients) were enrolled. While the gait abnormalities were subclinical, 11/20 DT patients (55%) walked at a slower speed on the TUG, 11/20 (55%) had reduced scores on the BBS, 9/20 (45%) had increased step time, 4/20 (20%) had reduced step length, 4/20 (20%) had wider stride width, 9/20 (45%) spent greater time during double support and 8/20 (40%) patients had an abnormal GVI. Comparisons of DT with healthy control data revealed a slower gait velocity (p = 0.001) and a reduced step length (p = 0.001). Compared to DT, the ET group revealed a reduced cadence (p = 0.04) and the OT group revealed an increased TUG time (p = 0.03), reduced BBS scores (p = 0.02), reduced step length (p = 0.02), reduced cadence (p = 0.03), reduced GVI (p = 0.01), and increased double support phase (p = 0.045).Conclusion: DT is accompanied by multiple abnormalities affecting gait and balance, albeit subclinical and less pronounced than ET and OT, possibly related to more effective compensatory mechanisms. Nevertheless, these abnormalities indicate that rehabilitative measures warrant consideration when managing in clinical settings

    Analyzing the effect of the COVID-19 vaccine on Parkinson’s disease symptoms

    Get PDF
    BackgroundParkinson’s Disease (PD) is one of the most common neurodegenerative diseases. PD has recently received more attention by researchers in the midst of the COVID-19 pandemic.ObjectiveYet to be researched is the effect of the COVID-19 vaccines on PD patients. Several PD patients are still hesitant to the vaccine due to this unaddressed fear. The purpose of this study is to address this gap.MethodsSurveys were administered to PD patients 50 years and older at UF Fixel Institute who received at least one dose of the COVID-19 vaccine. Survey questions included patients’ severity of PD symptoms before and after the vaccine and extent of worsening PD symptoms post-vaccination. After three weeks of collecting responses, the data was analyzed.Results34 respondents were eligible for data consideration because they fell within the age range being studied. A total of 14 respondents out of 34 (41%, p=0. 0001) reported that their PD symptoms worsened after the COVID-19 vaccine to some extent.ConclusionThere was strong evidence of worsening of PD symptoms post COVID-19 vaccination, however it was mostly mild and limited to a couple of days. The worsening had statistically significant moderate positive correlation with vaccine hesitancy and post-vaccine general side effects. A possible causative mechanism of PD symptom worsening using existing scientific knowledge would be stress and anxiety associated with vaccine hesitancy and the extent of post-vaccine general side effects (fever, chills, pain), likely via simulating a mild systemic infection/inflammation the latter already established causes of PD symptom worsening

    Proceedings of the Eighth Annual Deep Brain Stimulation Think Tank: Advances in Optogenetics, Ethical Issues Affecting DBS Research, Neuromodulatory Approaches for Depression, Adaptive Neurostimulation, and Emerging DBS Technologies

    Get PDF
    We estimate that 208,000 deep brain stimulation (DBS) devices have been implanted to address neurological and neuropsychiatric disorders worldwide. DBS Think Tank presenters pooled data and determined that DBS expanded in its scope and has been applied to multiple brain disorders in an effort to modulate neural circuitry. The DBS Think Tank was founded in 2012 providing a space where clinicians, engineers, researchers from industry and academia discuss current and emerging DBS technologies and logistical and ethical issues facing the field. The emphasis is on cutting edge research and collaboration aimed to advance the DBS field. The Eighth Annual DBS Think Tank was held virtually on September 1 and 2, 2020 (Zoom Video Communications) due to restrictions related to the COVID-19 pandemic. The meeting focused on advances in: (1) optogenetics as a tool for comprehending neurobiology of diseases and on optogenetically-inspired DBS, (2) cutting edge of emerging DBS technologies, (3) ethical issues affecting DBS research and access to care, (4) neuromodulatory approaches for depression, (5) advancing novel hardware, software and imaging methodologies, (6) use of neurophysiological signals in adaptive neurostimulation, and (7) use of more advanced technologies to improve DBS clinical outcomes. There were 178 attendees who participated in a DBS Think Tank survey, which revealed the expansion of DBS into several indications such as obesity, post-traumatic stress disorder, addiction and Alzheimer’s disease. This proceedings summarizes the advances discussed at the Eighth Annual DBS Think Tank

    Isolation and characterization of adult neural stem cells

    No full text
    It has been thought for a long time that the adult brain is incapable of generating new neurons, or that neurons cannot be added to its complex circuitry. However, recent technology has resulted in an explosion of research demonstrating that neurogenesis, or the birth of new neurons from adult stem cells constitutively occurs in two specific regions of the mammalian brain; namely the subventricular zone and hippocampal dentate gyrus. Adult CNS stem cells exhibit three main characteristics: (1) they are “self-renewing,” i.e., they possess a theoretically unlimited ability to produce progeny indistinguishable from themselves, (2) they are proliferative (undergoing mitosis) and (3) they are multipotent for the different neuroectodermal lineages of the CNS, including the different neuronal, and glial subtypes. CNS stem cells and all progenitor cell types are broadly termed “precursors.” In this chapter, we describe methods to identify, isolate and experimentally manipulate stem cells of the adult brain. We outline how to prepare a precursor cell culture from naive brain tissue and how to test the “stemness” potential of different cell types present in that culture, which is achieved in a three-step paradigm. Following their isolation, stem/progenitor cells are expanded in neurosphere culture. Single cells obtained from these neurospheres are sorted for the expression of surface markers by flow cytometry. Finally, putative stem cells from cell sorting will be subjected to the so-called neural colony-forming cell assay, which allows discrimination between stem and progenitor cells. At the end of this chapter we will also describe how to identify neural stem cells in vivo

    Precast Gelatin-Based Molds for Tissue Embedding Compatible with Mass Spectrometry Imaging

    No full text
    Preparation of tissue for matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) generally involves embedding the tissue followed by freezing and cryosectioning, usually between 5 and 25 ÎĽm thick, depending on the tissue type and the analyte(s) of interest. The brain is approximately 60% fat; it therefore lacks rigidity and poses structural preservation challenges during sample preparation. Histological sample preparation procedures are generally transferable to MALDI-MSI; however, there are various limitations. Optimal cutting temperature compound (OCT) is commonly used to embed and mount fixed tissue onto the chuck inside the cryostat during cryosectioning. However, OCT contains potential interferences that are detrimental to MALDI-MSI, while fixation is undesirable for the analysis of some analytes either due to extraction or chemical modification (i.e., polar metabolites). Therefore, a method for both fixed and fresh tissue compatible with MALDI-MSI and histology is desirable to increase the breadth of analyte(s), maintain the topographies of the brain, and provide rigidity to the fragile tissue while eliminating background interference. The method we introduce uses precast gelatin-based molds in which a whole mouse brain is embedded, flash frozen, and cryosectioned in preparation for mass spectrometry imaging (MSI)
    corecore